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CENTRO DE CIÊNCIAS EXATAS
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RESUMO

Esta tese aborda o antigo problema da determinação do momento linear de ondas eletro-

magnéticas dentro de materiais dielétricos, amplamente conhecido na literatura como

controvérsia de Abraham-Minkowski. As principais formulações eletromagnéticas exis-

tentes relacionadas a esse problema são analisadas em detalhes, onde é mostrado que

nenhuma delas fornece uma completa descrição da transferência de momento. Apresenta-

mos então uma nova densidade de força eletromagnética baseada na aproximação dipolar

para as fontes eletromagnéticas, que é verificada estar em concordância com a maioria

dos experimentos relatados até o momento. Um procedimento numérico semi-anaĺıtico é

posteriormente desenvolvido para obtenção dessa densidade de força numericamente sob

configurações experimentais comuns para auxiliar novas investigações. Por fim, propomos

uma maneira de adequadamente incorporar essa densidade de força a uma das formulações

descritas [Phys. Rev. A 96, 063834 (2017)], fornecendo uma potencial solução para a con-

trovérsia de Abraham-Minkowski.

Palavras-chave: momento da luz, força ótica, controvérsia de Abraham-Minkowski,

tensor de estresse-energia, Eletromagnetismo.



ABSTRACT

This thesis addresses the long-standing problem of determining the linear momentum of

electromagnetic waves inside dielectric materials, widely known in the literature as the

Abraham-Minkowski controversy. The main existing electromagnetic formulations related

to this problem are analyzed in detail, where it is shown that none of them provides

a complete description of momentum transfer. We then present a new electromagnetic

force density based on the dipolar approximation for the electromagnetic sources, which is

found to be in agreement with the majority of experiments reported up to date. A semi-

analytical numerical procedure is subsequently developed to obtain such force density

numerically under common experimental setups to support new investigations. At last,

we propose a way to properly incorporate this force density into one of the described

formulations [Phys. Rev. A 96, 063834 (2017)], providing a potential resolution to the

Abraham-Minkowski controversy.

Keywords: momentum of light, optical force, Abraham-Minkowski controversy, stress-

energy tensor, Electromagnetism.
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CHAPTER 1

Introduction

The concept of light in Physics has certainly a very rich history, which is inevitably tied

to the history of Physics itself. For example, light has been the definitive connection

between Electricity and Magnetism when both areas were unified by Maxwell by the end

of the XIX century. Light has also played an important role in the birth and development

of Quantum Mechanics in the beginning of the XX century, where it was first described

as a discrete entity by Planck and Einstein. The dual nature of light as wave and particle

has also inspired theoretical Physics, where the fundamental concept of waves of matter

was postulated and later confirmed in the middle of the XX century.

Even though our knowledge of the behavior of light grew immensely in the last century,

we still can not say it is completely understood. In particular, there is no consensus yet on

how light exchanges momentum when propagating inside matter. In fact, this seemingly

simple problem has been around for more than a hundred years. It was originally known

as Abraham-Minkowski controversy, and started in 1908 when Minkowski [1] used the

wave description of light to predict the momentum magnitude of a photon propagating

inside a dielectric media of refractive index n as

pM = np0, (1.1)

i.e., a linear increase of the vacuum momentum p0 with n. One year later, Abraham [2]

adopted the particle description of light and obtained the momentum magnitude of the

same photon as

pA = p0/n, (1.2)

showing now an inverse dependence of p0 with n. The Abraham-Minkowski controversy

originates from these conflicting results and has not been decisively clarified to this date.

Indeed, this problem is recognized nowadays to be not exclusive to dielectrics – it is also

present in waveguides [3], plasmas [4, 5], metals [6, 7] and metamaterials [8].

1



1.1 Literature survey 2

Although the Abraham-Minkowski controversy is originally a fundamental Physics

problem, it is closely related to many applications. In fact, the search for the definitive

knowledge of electromagnetic momentum transfer and optical forces in matter has drawn

much attention over the last few decades. Historically, this occurred mainly due to the de-

velopment of a technique called single-beam optical gradient trap, which is widely known

nowadays as optical tweezers. This optical tool was first devised by Ashkin in 1978 [9] and

successfully applied by Ashkin et al. in 1986 [10], where they reported the optical trapping

of dielectric particles of sizes from 10 µm to approximately 25 nm by employing focused

laser beams illumination. Since then, the application of optical manipulation techniques

has become more flexible and has grown in numbers significantly [11–17], being found

especially in biological systems [18] and atomic physics [19]. Additionally, controlling op-

tomechanical effects are of great interest for the development of photonic devices [20–23]

and for optofluidic technology [24–26].

1.1 Literature survey

Being a century-old problem, the Abraham-Minkowski controversy is widely covered

within the specialized literature. Here, we will mention separately and in chronological

order the most important works from both experimental and theoretical sides, focusing

on the former.

The first experimental investigation known dates back to 1901, when Lebedev ex-

amined the pressure exerted by light when reflecting off metal surfaces [27]. The topic

was revisited only five decades later, in 1954, when Jones and Richards [28] found that

the force exerted by light on opaque objects was proportional to the refractive index

of the medium in which the objects were immersed. This experiment was repeated in

1978 by Jones and Leslie [29] with increased accuracy and showed the same results. In

1973, Ashkin and Dziedzic [30] measured the deformation of a free surface of transparent

dielectric liquid generated by a focused light pulse, obtaining a result compatible with

momentum as given by Minkowski formulation. In 1975, Walker and Lahoz [31] used a

driven torsional pendulum under low frequencies to measure a torque that agreed with

Abraham’s formulation. Gibson et al. [32] measured in 1980 the photon drag effect in

germanium and silicon and the results were correctly described by Minkowski’s momen-

tum. In 2001, Casner and Delville [33] reported surface deformations at the interface of

phase-separated liquid mixtures that were compatible with Minkowski’s formulation. The

photon recoil momentum due to the index of refraction in a dilute gas of atoms was mea-

sured by Campbell et al. [34] in 2005 and was observed to be proportional to the gas’ index

of refraction. She et al. [35] reported in 2008 a direct observation of a force generated
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by outgoing light at the end of a nanometer silicon filament, which they concluded to be

supported by Abraham’s momentum; nevertheless, the work was criticized by Brevik [36]

and Mansuripur [37], who claimed such conclusion was incorrect. The interpretation of

She’s et al. [35] results has also been discussed in a more recent work [38]. In 2011, O.

Emile and J. Emile [39] reported an Abraham-like deformation of an air-water interface

by applying a low-power laser beam under total internal reflection. This work was criti-

cized theoretically by Brasselet [40] and experimentally by Verma et al. [41], who claimed

the deformation observed was not due to the radiation pressure acting at the interface.

Still in 2011, Rikken and Tiggelen [42] observed a momentum transfer of Abraham-type

in a gas at low frequency excitations. The same authors reported, in the following year,

measurements of forces in accordance with Abraham formulation on a high permittivity

non-magnetic dielectric [43]. In 2014, Astrath et al. [44] performed an experiment sim-

ilar to that of Ashkin and Dziedzic by measuring the deformation of a free interface of

water/air generated by focused light, obtaining similar quantitative results on the water

surface displacement. One year later, Zhang et al. [45] performed yet another similar

experiment, but obtained a surface deformation in agreement with Abraham’s momen-

tum. Zhang et al.’s work was supported by a theoretical argument by Leonhardt [46],

who solved approximate coupled electromagnetic-fluid dynamics equations to show that

both Abraham’s and Minkowski’s momentum can arise in this situation, depending on

some experimental parameters. Capeloto et al. [47] tried in 2015 to reproduce the re-

sults by Zhang et al., but consistently found only Minkowski-type deformations for water

under the same conditions – and also for some other different dielectric fluids. Also in

2015 Verma and Singh [48] reported a Minkowski-type deformation of an air-water inter-

face under different incidence angles near the critical angle for total internal reflection.

In 2017, Choi et al. [49] used an optical fiber waveguide to measure the deformation of

an air/liquid interface, and the results were in accordance with Abraham’s formulation.

In the same year, Verma et al. [50] systematically scanned a wide range of experimen-

tal parameters while measuring the dynamics of a water surface excited by laser beams

and found agreement with Minkowski’s theory under all tested conditions. Still in 2017,

Kundu et al. [51] reported an Abraham-like deformation in graphene oxide surface due to

radiation pressure. However, in the following year, the work was criticized by Brevik [52],

who claimed the deformation observed was due to the material’s electric conductivity,

and not radiation pressure itself. It has also been pointed out that the deformation of the

medium in the experiment by Kundu et al. is irreversible when it is a result of the break-

ing of chemical bonds in the material, which is not described by the conventional optical

force concepts [53]. In 2019, measurements of the photon drag effect in thin metal films

agreed with Minkowski’s momentum [54], except under some specific conditions, where
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the momentum transfer was observed to be of opposite sign – a result that still lacks

theoretical explanation. Also in 2019 Schaberle et al. [55] studied the photon momen-

tum transfer at air-water interfaces under total internal reflection and the results agreed

with Minkowski’s momentum. Still in 2019, Chaudhary and Singh [56] reported radiation

pressure effects close to pico-Newton resolution in water using low power laser beams –

again, the results agreed with Minkowski’s momentum. Most recently, in 2021, Xi et

al. measured the angular dependence of the opto-mechanical force acting on dielectric

optical fibers [57], and the observed asymmetry could not be readily related to any known

formulation.

The literature is also vast regarding theoretical investigations. As already stated, we

will only mention some of the most important contributions. In 1953, Balazs [58] devel-

oped a thought experiment on momentum conservation and concluded that Abraham’s

claim was the correct one. In 1973, Gordon [59] demonstrated that for non-dispersive di-

electric media the momentum of electromagnetic fields should be of Abraham’s form, but

Minkowski’s form can also be used under some circumstances to calculate the radiation

pressure on objects embedded in such dielectric media. In 1991, Nelson [60] proposed a

theoretical solution to the Abraham-Minkowski controversy, calculating the momentum of

the electromagnetic wave in a dielectric medium and a corresponding pseudomomentum

of the medium alone. In 2006, Leonhardt [61] showed that, for a Bose-Einstein conden-

sate, Minkowski’s momentum is related to the phase of the condensate, while Abraham’s

momentum describes the flow of the dielectric. In 2007, Pfeifer et al. [62] suggested

a subtle solution for the controversy: the division of the total energy-momentum tensor

into electromagnetic and material components should be arbitrary – so, both Minkowski’s

and Abraham’s formulations have a material counterpart, and the sum of these compo-

nents yield the same total energy and momentum. Padgett [63] showed in 2008 that the

diffraction phenomenon within a dielectric is supported by Minkowski’s momentum. In

a celebrated work in 2010, Barnett [64] identified Abraham’s momentum as the kinetic

momentum and Minkowski’s momentum as the canonical momentum, claiming to have

resolved the controversy. This interpretation was endorsed by Kemp [65] in a review in

the following year. Also in 2011, Brevik and Elligsen [66] solved analytically some static

fields configurations and stated that describing the conserved quantities of the system is

not sufficient to support one formulation over another – instead, one must look into the

experimental observations. Later, in 2017, Kemp and Sheppard [67] showed that neither

Minkowski nor Abraham formulations are universally correct, for their failure to describe

energy and momentum fluxes in some metamaterials. Also in 2017 Brevik employed a

field-theoretical procedure, obtaining Minkowski’s momentum from the canonical formal-

ism [68]. One year later, Brevik showed that, contrary to the claims, most of the reported
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experiments are actually unable to distinguish between Abraham’s and Minkowski’s mo-

mentum [69].

1.2 Overview

This thesis is organized as follows. In Chapter 2, we review the main properties required

by any valid electromagnetic stress-energy tensor candidate and describe each considered

formulation in detail, showing none of them is universally correct. In Chapter 3, we pro-

pose a new formulation based on microscopic dipolar sources for dielectric media. This

formulation is then compared to the literature both theoretically and experimentally. In

Chapter 4 we present a numerical method to calculate the electromagnetic forces gen-

erated in dielectric media by focused gaussian beams and some related simulations. At

last, in Chapter 5 the central results of the work are summarized and some future work

perspectives are suggested.



CHAPTER 2

Electromagnetic formalisms

For a system with arbitrary electromagnetic sources ρ and J, Maxwell’s equations for an

inertial reference frame at rest are given in standard units by

ε0∇ · E = ρ, (2.1)

∇ ·B = 0, (2.2)

1

µ0

∇×B− ε0
∂E

∂t
= J, (2.3)

∇× E+
∂B

∂t
= 0, (2.4)

where ρ is the electric charge density, J is the electric current density, E is the electric

field and B is the magnetic induction field. These equations are known, respectively, as

Gauss’ law, Gauss’ law for magnetism, Ampère-Maxwell’s law and Faraday’s law. This

set is the most general form of Maxwell’s equations for a system at rest – however, this

form is often also unpractical, because the true microscopic sources ρ and J for continuous

distributions, such as ordinary matter, are impossible to be completely known. Thus, for

dielectric media, Maxwell’s equations are usually given as

∇ ·D = ρf , (2.5)

∇ ·B = 0, (2.6)

∇×H− ∂D

∂t
= Jf , (2.7)

∇× E+
∂B

∂t
= 0, (2.8)

where D is the electric displacement field and H is the magnetic field. The medium

response in this form is given in terms of a polarization field P and a magnetization field

6
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M, with D = ε0E+P and B = µ0 (H+M). The subscript “f” is used to denote the free

electric charge density ρf and free electric current density Jf . Any bound (as opposed to

free) charge and current densities are effectively described in terms of P and M in bulk

as

ρb = −∇ ·P (2.9)

and

Jb = ∇×M+
∂P

∂t
. (2.10)

The fields obtained from Maxwell’s equations in this last presented form are known

as macroscopic fields, because the microscopic responses of the medium are taken as

smoothed spatial averages, resulting in P and M. This averaging procedure is expected

to produce loss of information about the system, becoming especially significant when

dissipative processes are relevant [70]. Indeed, as shown in Ref. [71], descriptions using

effective bound charges and bound currents are unable to correctly describe the microscop-

ical distribution of force because the internal surface terms are always being neglected.

2.1 Electromagnetic stress-energy tensor general

properties

The principles of conservation of energy and momentum for the electromagnetic fields

can be described by the standard continuity equations. Assuming no external mechanical

sources, these equations are [72]

f = −
←→
∇ ·
←→
T − ∂g

∂t
, (2.11)

ϕ = −∇ · S− ∂W

∂t
, (2.12)

where
←→
T is the electromagnetic stress tensor, g is the electromagnetic momentum density,

f is the force density generated by the fields, ϕ is the power density delivered by the fields,

S is the electromagnetic energy flux and W is the electromagnetic energy density. Notice

that Eqs. (2.11) and (2.12) – and, in fact, any supplementary equation for electromagnetic

force/momentum/energy – are of course not Maxwell’s equations themselves, but must

always be consistent with them. Specifically, the force density is given by

f = ρE+ J×B, (2.13)
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which is known as Lorentz force law. This equation is both experimentally verified and

covariant (see Appendix A) – there is currently no doubt about its validity within classical

Electromagnetism. Consequently, it is expected that at least one problematic aspect of

the Abraham-Minkowski controversy is related to how the sources ρ and J are modeled

in each formulation. This will be discussed later in this chapter and in the next chapter.

In vacuum, we have f = 0 and ϕ = 0 in Eqs. (2.11) and (2.12), and their terms are

given unambiguously by

←→
T vac =

1

2

(
ε0|E|2 + µ−1

0 |B|2
)←→

I −ε0E⊗ E−µ−1
0 B⊗B, (2.14)

gvac = ε0E×B, (2.15)

Svac = µ−1
0 E×B, (2.16)

Wvac =
1

2

(
ε0|E|2 + µ−1

0 |B|2
)
, (2.17)

where
←→
I is the unit dyadic and ε0 and µ0 are the vacuum permittivity and permeability,

respectively. The tensor given in Eq. (2.14) is known as Maxwell stress tensor [73] (see

Appendix A for its covariant form). To derive it, we start from the Lorentz force law,

Eq. (2.13), substituting ρ and J according to Eqs. (2.1) and (2.3), obtaining

f = (∇ · E)E+

(
1

µ0

∇×B− ε0
∂E

∂t

)
×B. (2.18)

Next, with the aid of Faraday’s law, the time derivative term is rewritten as

ε0
∂E

∂t
×B = ε0

∂

∂t
(E×B) + ε0E× (∇× E). (2.19)

Inserting this result in Eq. (2.18) and rearranging, we have

f = ε0[(∇ · E)E− E× (∇× E)]− 1

µ0

[B× (∇×B)]− ε0
∂

∂t
(E×B). (2.20)

Now, recalling that ∇ ·B = 0 and using the vector calculus identity A× (∇×A) =

(A ·∇)A−∇|A|2/2, we obtain

f = ε0[(∇ · E)E+ (E ·∇)E] +
1

µ0

[(∇ ·B)B+ (B ·∇)B]

−1

2
∇
(
ε0|E|2 +

1

µ0

|B|2
)
− ε0

∂

∂t
(E×B). (2.21)

This is a continuity equation as Eq. (2.11) with
←→
T and g given by Eqs. (2.14) and
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(2.15), respectively. The continuity equation for energy is obtained by first dot-multiplying

Ampère-Maxwell’s law by E, then dot-multiplying Faraday’s law by B and taking the

difference between these two equations, yielding

− 1

µ0

∇ · (E×B)− 1

2

∂

∂t

(
ε0|E|2 +

1

µ0

|B|2
)

= 0, (2.22)

from where S and W in Eqs. (2.16) and (2.17) are readily identified.

In the context of special relativity, it is convenient to rewrite Eqs. (2.11) and (2.12) as

a single continuity equation for an appropriate four-vector. Considering a flat space-time

(also known as Minkowski space) and using Einstein summation convention for repeated

indices, the four-dimensional continuity equation reads

ηµσfσ = fµ = −∂νT µν , (2.23)

where µ, ν = 0, 1, 2, 3. The metric convention adopted is

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , (2.24)

while

xν = (ct, x, y, z) , (2.25)

∂ν =
∂

∂xν
=

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (2.26)

f ν = (ϕ/c, fx, fy, fz) , (2.27)

and

T µν =


W Sx/c Sy/c Sz/c

cgx Txx Txy Txz

cgy Tyx Tyy Tyz

cgz Tzx Tzy Tzz

 , (2.28)

with c = (ε0µ0)
−1/2 being the speed of light in vacuum.

Eq. (2.28) represents a four-dimensional tensor, which in our context is known as

electromagnetic stress-energy tensor. To satisfy the conservation of angular momentum,

it is known from Field Theory that the total stress-energy tensor from a closed system

must be symmetric [72]. Therefore, if T describes a pure electromagnetic system, we must

have S = c2g and Tij = Tji, for i, j = x, y, z and i ̸= j. Besides, to secure the equivalence
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of physical laws in different arbitrary inertial systems, any appropriate tensor candidate

must also be form-invariant under Lorentz transformations.

Lastly, we emphasize that only the total stress-energy tensor of the system of field

and matter must be symmetric and invariant [74]. Thus, it is always possible to choose a

matter counterpart for the total tensor that will make it mathematically correct; never-

theless, the physical significance of this choice depends on the specific description of the

matter-field interaction adopted.

2.2 Hidden momentum

In 1967, Shockley and James identified [75] a previously unrecognized source of linear

momentum that should arise when a magnetic dipole moment m interacts with an electric

field – even if both did not vary in time. This source became known as hidden momentum,

and is given as

ph =
1

c2
(m× E). (2.29)

Since then, many works tried to properly interpret this puzzling term, which is in-

evitably tied to the Abraham-Minkowski controversy. Some authors claimed that it occurs

as a relativistic effect in systems that are macroscopically at rest, but contain internally

moving parts, such as a common electric circuit [74, 76–78] (see also Ref. [79] and refer-

ences therein). It was also shown that hidden momentum is necessary to keep the correct

relativistic properties of energy, momentum and rest mass of a charge and current car-

rying body [80]. Indeed, it was recently suggested the hidden momentum is a general

relativistic concept, not exclusive to electromagnetic systems [81].

Apart from these historical conceptual issues, it was formally shown [82] that starting

from the conventional Quantum Electrodynamics (QED) Lagrangian for a point, spinless

charged particle in relativistic motion and properly applying the center of mass-energy

theorem there must be an extra momentum given by Eq. (2.29). Classically, the correct

interpretation of hidden momentum is actually quite simple: a moving electric dipole

develops a magnetic dipole. More specifically, this occurs when the electric dipole moment

p of a particle moving with velocity u, both measured in the laboratory frame, is Lorentz-

transformed to the particle’s rest frame [83]. To first order in |u|/c, the new electric dipole

moment is [84] p′ = p−u×m′/c2, where p′ andm′ are the particle’s electric and magnetic

dipole moments, respectively, in its rest frame. The hidden momentum contribution then

comes exactly from this last term.

In 1984 Aharonov and Casher showed in a seminal work [85] that the hidden mo-

mentum arises as a topological quantum effect when describing the interaction between

a charged particle and a magnetic moment, where they obtained Eq. (2.29) as a non-
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relativistic limit of the Dirac equation – in this context, the hidden momentum is also

known in the literature as Aharonov-Casher interaction. In analogy with the Aharonov-

Bohm effect [86], this interaction does not necessarily generate a force, but introduces a

phase shift in the wave function of the system, which has already been observed – see

Refs. [87, 88] for example.

Notice that the symmetry inherent to Maxwell’s equations requires the existence of an

effect analogous to hidden momentum for magnetic dipoles, i.e., an effect due to moving

magnetic dipoles generating electric dipoles. This indeed takes place and is known in the

literature as Röntgen interaction. Its momentum is given by pR = −p×B, and can also

be rigorously obtained from the QED framework [82, 89, 90]. This interaction can also

generate a topological phase [91], but, to our knowledge, such effect has not been observed

yet.

Although hidden momentum has certainly been subject of more intense discussions

in the literature, both interactions presented here are of equal importance, and they are

expected to take essential part in the eventual resolution of the Abraham-Minkowski

problem. They are known to arise when the center of mass-energy of the system is

regarded as a dynamic variable – however, the Röntgen term appears naturally even in

non-relativistic derivations (see Refs. [90, 92] for example), while the hidden momentum

necessarily requires a relativistic treatment, as shown in Ref. [82]. More specifically,

the Röntgen interaction and hidden momentum contribute to the electromagnetic force

density as, respectively, fR = d(P×B)/ dt and fh = − d(M×E/c2)/ dt, where the minus

signs added to both equations stem from the fact that the force densities are generated

due to the fields losing their momentum. The latter contribution is important even in

systems with non-relativistic velocities [80], and so it must be properly added ad hoc in

the results from non-relativistic derivations.

2.3 Electromagnetic stress-energy tensor

formulations

In this section, we will present and discuss the main electromagnetic formulations existing

in the literature. Besides the two formulations that name the Abraham-Minkowski con-

troversy, there are other historically important formulations which will also be addressed

in this work. Specifically, we will consider the Ampère formulation, the Einstein-Laub

formulation [93], the Chu formulation [94], and the recent mass-polariton formulation [95–

100].
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2.3.1 Minkowski formulation

In 1908, Minkowski [1] built his stress tensor for linear dielectric media by employing the

Lorentz force density; however, he erroneously associated all the charge densities to D,

as he used ∇ ·D = ρ instead of ∇ ·D = ρf in his derivation [101]. Minkowski’s tensor is

given by
←→
T M =

1

2
(D · E+B ·H)

←→
I −D⊗ E−B⊗H, (2.30)

while the momentum density is gM = D×B. Note that for a non-magnetic, isotropic and

linear dielectric, the magnitude of gM is proportional to n3E2 if the electromagnetic wave

is taken to be plane. We know the electric field amplitude falls as 1/n when entering such

dielectric media from vacuum – thus, when compared to vacuum, the magnitude of gM

increases by n, in accordance with Eq. (1.1).

To find the associated electromagnetic force density, the divergence operator is applied

to
←→
T M, yielding

−
←→
∇ ·
←→
T M = ε (∇ · E)E+ ε (E ·∇)E− 1

2
|E|2∇ε+ (E⊗ E) ·∇ε− 1

2
ε∇ (|E|2)

+µ(∇·H)H+ µ (H·∇)H+(H⊗H)·∇µ− 1
2
µ∇(|H|2)− 1

2
|H|2∇µ. (2.31)

By using the the vector calculus property 1
2
∇ (A ·A) = (A ·∇)A − (∇×A) × A

and Maxwell’s equations, the electromagnetic force density reduces to

fM = −1

2
|E|2∇ε− 1

2
|H|2∇µ, (2.32)

where it is assumed that the refractive index is not time dependent.

The energy continuity equation is obtained by first dot multiplying Eq. (2.7) by E and

Eq. (2.8) by H and then subtracting them, yielding

(∇×H) · E− (∇× E) ·H = E · Jf + E · ∂D
∂t

+H · ∂B
∂t

. (2.33)

Using the vector property ∇·(U×W) = (∇×U)·W−U·(∇×W) and considering

linear isotropic media, the last equation can be rewritten as

−∇ · (E×H)− 1

2

∂

∂t
(D · E+B ·H) = E · Jf , (2.34)

from where it can be identified

SM = E×H, (2.35)

WM =
1

2
(D · E+B ·H) (2.36)
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and

ϕM = E · Jf . (2.37)

Minkowski’s stress-energy tensor is relativistically invariant [67], but clearly not sym-

metric, because SM ̸= c2gM. It predicts a momentum transfer which is linear with the

refractive index n, and seems to agree with most of the experiments so far. It has been

suggested that this tensor actually corresponds to the canonical momentum of the elec-

tromagnetic wave in dielectric media [64].

2.3.2 Abraham formulation

In 1909, Abraham built a tensor equal to Minkowski’s, but altered the momentum density

to make the tensor symmetric [2],

gAb =
1

c2
E×H, (2.38)

while keeping the remaining terms unchanged. For plane waves propagating inside non-

magnetic, isotropic and linear dielectrics, the magnitude of gAb is proportional to nE2.

Again, as we know the electric field amplitude falls as 1/n when entering dielectric me-

dia from vacuum, the magnitude of gAb relative to vacuum also falls as 1/n, justifying

Eq. (1.2).

It can be verified that the force density is given by

fAb = fM +
∂

∂t
(gM − gAb) , (2.39)

where the time derivative term is known in the literature as Abraham force1. Explicitly,

for linear, isotropic media, we have

fAb=−
1

2
|E|2∇ε− 1

2
|H|2∇µ+

n2 − 1

c2
∂

∂t
(E×H), (2.40)

where n =
√
εrµr is the medium refractive index, with εr = ε/ε0 and µr = µ/µ0 being the

relative permittivity and permeability, respectively. The continuity equation for energy

is the same as Minkowski’s, i.e., ϕAb = ϕM, WAb = WM and SAb = SM.

Abraham’s change made the stress-energy tensor symmetric, while its invariance was

believed to have been removed [67] – however, a recent work showed that it is possible

to write this tensor in an invariant form [100]. There is a suggestion that Abraham’s

1This is, of course, a force density term, but we follow the literature and call it “Abraham force”.
We refer to “Abraham force density” as the full force density equation from Abraham’s formulation, i.e.,
Eq. (2.40).
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momentum transfer, which is proportional to 1/n, is actually the kinetic momentum of

the electromagnetic field part of the system [64].

2.3.3 Ampère formulation

Ampère formulation, also known as Ampère-Lorentz formulation, is the one appearing

in every modern electromagnetic theory textbook. It treats the microscopic response of

dielectric media classically in terms of electric charges alone. Microscopic electric dipoles

generate the polarization, while the magnetization is generated by tiny closed loops of

electric current (usually referred to as Ampèrian loops), which represent the motion of

the bound electrons. Classically, it is known that such closed current loops act like effective

magnetic dipoles – i.e., in this formulation, the magnetization will be caused by bound

electric currents. The use of this microscopic model can be justified by the agreement

with measurements of the intrinsic magnetic dipole of neutrons [102]. Following Section 2,

Maxwell’s equations are then written for E and B with bound sources as:

ε0∇ · E = ρf −∇ ·P, (2.41)

∇ ·B = 0, (2.42)

1

µ0

∇×B− ε0
∂E

∂t
= Jf +

∂P

∂t
+∇×M, (2.43)

∇× E+
∂B

∂t
= 0. (2.44)

The force density is given by Lorentz force, Eq. (2.13), with charge density

ρ = ρf −∇ ·P (2.45)

and current density

J = Jf +
∂P

∂t
+∇×M, (2.46)

which yields

fA = (ρf −∇ ·P)E+

(
Jf +

∂P

∂t
+∇×M

)
×B. (2.47)

Last equation can be rewritten as

fA = ε0 (∇ · E)E+

(
1

µ0

∇×B− ε0
∂E

∂t

)
×B, (2.48)

where Gauss’ law and Ampère’s law have been used. Writing now the time derivative

term as the derivative of a product and using the two remaining Maxwell’s equations, the
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force can be written as

fA = ε0

[
(∇ · E)E− 1

2
∇ (E · E) + (E ·∇)E

]
+

1

µ0

[
(∇ ·B)B− 1

2
∇ (B ·B) + (B ·∇)B

]
− ε0

∂ (E×B)

∂t
. (2.49)

The last equation can, finally, be written in a compact way using the tensor notation

as

fA = −
←→
∇ ·
←→
T A −

∂gA

∂t
(2.50)

where
←→
T A =

1

2

(
ε0|E|2+

1

µ0

|B|2
)
←→
I − ε0E⊗ E− 1

µ0

B⊗B, (2.51)

is the Ampère stress tensor and

gA = ε0E×B (2.52)

is the Ampère momentum density.

The continuity equation for energy is obtained by first dot multiplying Eq. (2.43) by

E and Eq. (2.44) by H and subtracting the resulting equations as

− 1

µ0

∇ · (E×B)− 1

2

∂

∂t

(
ε0|E|2 +

1

µ0

|B|2
)

=

E · Jf + E · ∂P
∂t

+ E · (∇×M) , (2.53)

from where it can be identified

SA =
1

µ0

(E×B) , (2.54)

WA =
1

2

(
ε0|E|2 +

1

µ0

|B|2
)
, (2.55)

and

ϕA = E · Jf + E · ∂P
∂t

+ E · (∇×M) . (2.56)

As it can be seen, SA = c2gA, so Ampère stress-energy tensor is indeed symmetric,

being thus able to correctly describe angular momentum conservation. Besides, it is also

relativistically invariant [67].

Lastly, the hidden momentum contribution must be added to Ampère’s formulation,

as discussed in Section 2.2. It generates an extra force density

fh =
1

c2
∂

∂t
(M× E) , (2.57)
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accompanied by a hidden energy flux

Sh = M× E. (2.58)

This last term guarantees that there is no divergence in the continuity equation for

energy, Eq. (2.12), when considering magnetic interfaces. This can be readily seen, since

the total energy flux is then given by Stotal = SA +Sh = E×H, which is well behaved at

interfaces when the divergent operator is applied.

2.3.4 Einstein-Laub formulation

In the Einstein-Laub formulation, the polarization and magnetization are thought, re-

spectively, as “consisting of spatial displacements of electric and magnetic mass particles

of dipoles that are bound to equilibrium positions” [93]. The electric and magnetic fields

are treated as equivalents, and so are the electric and magnetic dipoles. This means that

both dipole types are modeled as two monopoles close together with opposite charge of

the corresponding type. First, the force on the free electric charges plus electric dipoles

is given as

f1 = ρfE+ (P ·∇)E, (2.59)

and, analogously for the magnetic dipoles, as

f2 = µ0 (M ·∇)H. (2.60)

Next, an argument is developed to show that the force generated on an electric current-

carrying element is proportional to H, generating the force density term

f3 =

(
Jf +

∂P

∂t

)
× µ0H, (2.61)

and the analogous term for the electric field

f4 = −
1

c2
∂M

∂t
× E. (2.62)

The Einstein-Laub force density is then given by the sum of these four terms. Using

Maxwell’s macroscopic equations, the force density can be written as

fEL = (∇ ·D)E+ (P ·∇)E+ µ0 (M ·∇)H+

(
∇×H− ε0

∂E

∂t

)
× µ0H

+

(
∇× E+ µ0

∂H

∂t

)
× ε0E. (2.63)
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Grouping the time derivatives and using ∇ ·B = 0, we have

fEL = (∇ ·D)E+ (P ·∇)E+ µ0 (M·∇)H+ (∇·B)H− ε0
2
∇ (E · E)

+ ε0 (E ·∇)E− µ0

2
∇ (H ·H) + µ0 (H ·∇)H− 1

c2
∂

∂t
(E×H) . (2.64)

This can be conveniently written in tensor notation as

fEL = −
←→
∇ ·
←→
T EL −

∂gEL

∂t
, (2.65)

where
←→
T EL =

1

2

(
ε0|E|2+ µ0|H|2

)←→
I −D⊗ E−B⊗H (2.66)

is the Einstein-Laub stress tensor and gEL is the Einstein-Laub momentum density, which

is equal to Abraham’s, i.e., gEL = gAb.

The energy continuity equation is obtained similarly to the previous formulations, and

is given by

−∇ · (E×H)− 1

2

∂

∂t

(
ε0|E|2 + µ0|H|2

)
= E · Jf + E · ∂P

∂t
+ µ0H ·

∂M

∂t
, (2.67)

from where we identify

SEL = E×H, (2.68)

WEL =
1

2

(
ε0|E|2 + µ0|H|2

)
, (2.69)

and

ϕEL = E · Jf + E · ∂P
∂t

+ µ0H ·
∂M

∂t
. (2.70)

We can see that Einstein-Laub’s stress-energy tensor is symmetric only for linear and

isotropic media, and it is known to be not invariant under Lorentz transformations [67]. It

does not need the inclusion of the hidden momentum contribution; however, it is strongly

criticized for having a non-zero self-force [103]. Besides, the force generated on electric

charges is experimentally verified to be proportional to B [104], not H, as Eq. (2.60)

considers, and the magnetic dipole force in this model also should be proportional to

B instead of H, as Eq. (2.62) describes [105]. Einstein-Laub’s formulation generates

the same total force as Ampère’s formulation if the hidden momentum contribution can

be neglected in the latter [106]; however, their spatial distributions can be significantly

different [107].

At last, there is a very subtle problem in the derivation of the stress tensor for this

formulation, which does not seem to have been yet recognized. The force densities are

initially written for microscopic dipoles – but later, in Eq. (2.63), the source terms are
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substituted by their corresponding fields according to the macroscopic Maxwell’s equa-

tions. This procedure is, of course, not expected to work. In other words, Eq. (2.65)

is most generally not true, as it does not represent the sum of Eqs. (2.59) to (2.62) for

arbitrary sources.

2.3.5 Chu formulation

Chu’s formulation was developed to treat the forces on moving fluids [94]. It uses the

so-called E-H representation, where the presence of matter is added as source terms in

Maxwell’s equation. For a reference frame at rest, the E-H equations are

∇ · E =
ρf
ε0
− 1

ε0
∇ ·P, (2.71)

∇ ·H = −∇ ·M, (2.72)

∇×H− ε0
∂E

∂t
= Jf +

∂P

∂t
, (2.73)

∇× E+ µ0
∂H

∂t
= −µ0

∂M

∂t
. (2.74)

In this formulation, there is a separation of the electromagnetic part and a matter-field

interaction part. The electromagnetic part is identical to the well-known Maxwell stress

energy tensor,

←→
T C =

1

2

(
ε0|E|2 + µ0|H|2

)←→
I − ε0E⊗ E− µ0H⊗H, (2.75)

with momentum density gC = gAb. We recall the crucial detail that the fields in this

formulation must be calculated according to the E-H equations shown in the presence of

matter. In this situation,
←→
T C is known as the Chu stress tensor – which is symmetric

and invariant [67].

The interaction part is described by the tensor

←→
T int = −P⊗ E− µ0M⊗H (2.76)

and the momentum density gint = 0. Chu’s microscopic interpretation is identical to

Einstein-Laub’s: electric and magnetic dipoles are the sources of polarization and mag-

netization and the electromagnetic fields are treated in a dual way. In fact, the sum of

the tensors
←→
T C and

←→
T int produces, mathematically, the Einstein-Laub tensor – which is

expected, since both formulations use the same microscopic model for matter. Consider-

ing a system at rest, Chu’s force density is then the same as Einstein-Laub’s, with their

total stress-energy tensors sharing the same properties.
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2.3.6 Mass-polariton formulation

The mass-polariton (MP) formulation [95–100] is motivated by noticing that none of the

previous formulations is able to satisfy the covariance principle from special relativity

when applying the center of mass-energy theorem to the so-called Einstein’s box thought

experiment. In this experiment, we have initially a photon in vacuum with energy ℏω and

velocity c and a dielectric medium block of mass M and refractive index n at rest. The

photon then strikes the medium, propagating through it with velocity v = c/n, while the

medium acquires a velocity V . According to the center of mass-energy theorem, we must

have

Vcme =
ℏωc

ℏω +Mc2
=

ℏωv +Mc2V

ℏω +Mc2
, (2.77)

where Vcme is the velocity of the center of mass-energy of the system. Equating the numer-

ators, we have ℏω/c = ℏω/(nc) +MV , which suggests the photon has an Abraham-type

momentum. However, we can see that if the photon has energy E = ℏω and momentum

p = ℏω/(nc), the covariant energy-momentum relation E2 = (pc)2 + (m0c
2)2 can not

be satisfied if we set the rest mass of the photon as zero. The same problem occurs if

we choose a Minkowski-type momentum, i.e., if we take p = nℏω/c. This simple result

suggests the possibility that the photon inside the medium actually couples to the atoms,

creating a bound state of field and matter with a non-zero rest mass. This is exactly the

proposal of the MP formulation.

In the MP formulation, there is a coupled state of the electromagnetic field and matter

with a small but non-zero rest mass – the mass-polariton itself –, which is related to an

atomic mass density wave (MDW) driven forward by the optical forces acting on the

medium as the applied electromagnetic wave propagates through it [95]. This atomic

MDW is composed of the rest energy associated with local variations in the atomic density

resulting from the displacement of atoms by the optical force density. Besides, there is a

very small energy transfer from the field to the kinetic energy of the medium due to the

movement of the atoms.

By employing Lorentz transformations, it can be shown [95] that for linear, isotropic

and dispersionless media the mass-polariton momentum is pMP = nℏω/c, while the small

mass transferred by the MDW is given by δm = (n2 − 1)ℏω/c2. These results are indeed

able to satisfy the center of mass-energy condition, Eq. (2.77), as well as the energy

covariance condition. Additionally, it can also be shown that in this formulation the

field momentum is pfield = ℏω/(nc), while the MDW momentum is the difference of the

MP and field momentum, i.e., pMDW = (n − 1/n)ℏω/c. However, notice that due to the

coupling of field and matter only pMP and δm are directly measurable. Also notice that

this form of momentum, explicitly separated into field and matter parts as Abraham-type
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and Minkowski-type respectively, can also be found in Ref. [101] – although no further

discussion in terms of the small mass transfer and covariance condition is presented there.

According to the interpretation just discussed, the total stress-energy tensor of the

mass-polariton state of light is composed of a field part and a material part as [95, 98–

100]

TMP = Tfield + TMDW. (2.78)

It is assumed that the Abraham force density, Eq. (2.40), is the correct optical force

density in the laboratory frame for a linear medium with no dispersion, no losses and

in mechanical equilibrium. Therefore, the field part of the MP formulation is, in the

laboratory frame, equal to the Abraham stress energy tensor [95, 98, 99, 108]

Tfield = TAb. (2.79)

The matter part of MP stress-energy tensor is related to the MDW and is given by

the difference of the stress-energy tensors of the medium in the presence and absence of

light as [95, 98–100]

TMDW =

(
ρac

2 ρav
T
a c

ρavac ρava ⊗ va

)
−

(
ρa0c

2 0

0 0

)

=

(
ρMDWc2 ρMDWvT

MDWc

ρMDWvMDWc ρMDWva ⊗ vMDW

)
. (2.80)

Here, ρa = m0na is the atomic mass density, ρa0 = m0na0 is the atomic mass density in

the absence of light with the corresponding number density na0 and vMDW = ρava/ρMDW

is the local velocity of light in the medium. The mass density of the atomic MDW is

defined as ρMDW = ρa−ρa0 = m0(na−na0). The MDW energy density ρMDWc2 is the rest

energy originating from the atomic number density difference na − na0 generated by the

Abraham force driving the atoms forward. Therefore, being a result from the compression

of atoms closer to each other by the optical force density of a light pulse (and not from the

increase of kinetic energy), the rest energy density ρMDWc2 does not vanish in the assumed

non-relativistic limit. On its turn, the kinetic energy of atoms, which is transferred from

the field to the medium, is extremely small due to its quadratic dependence on the small

atomic velocity [100].

The stress-energy tensor TMP was shown to satisfy all conservation and symmetry

requirements [98, 100] and also agreed with computer simulations of the continuum dy-

namics of elastic media in the presence of optical forces [96] and angular momentum

transfer (from both orbital and spin origins) [97].
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2.4 Electro- and magnetostriction effects

When electromagnetic fields are applied to a dielectric medium, it is observed there are

electromagnetic forces acting towards the regions of higher field intensity. For polarizable

media, this phenomenon is known as electrostriction, while its magnetic analogue is known

as magnetostriction. They are transient effects: the medium responds by increasing its

local pressure (for fluids) or local strain (for solids) until the associated electromagnetic

forces are completely counterbalanced. This happens approximately in a time scale given

by the time taken for pressure waves to propagate a distance equal to the characteristic

spatial scale of the region affected by the fields [109]. After this time, the material reaches

equilibrium and striction forces have no significant extra effect over the material.

Another important feature is that the striction effects always produce a zero total force

when integrated over the volume of the material. Since the striction forces are written as

gradients (as we will shortly see), their volumetric integrals can always be transformed

into exterior surface integrals. The surface of integration must be closed and lie outside

the material – but is otherwise arbitrary. Thus, we use the same argument as Ref. [67]:

we choose this surface to be contained within an artificial vacuum layer of infinitesimal

thickness surrounding the material. In this case, striction forces are always zero, and the

physical situation is recovered as the thickness tends to zero. Therefore, striction forces

do not generate any effect on the material’s center of mass – they are important only in

local force considerations.

The properties just described lead to electro- and magnetostriction being usually ig-

nored in the analysis of experiments related to the Abraham-Minkowski controversy; they

must, however, inevitably be present in a definitive description of the light-matter inter-

action. For example, striction effects are often directly related to the stability of fluids

exposed to electromagnetic fields [110–113] and also provide a nonlinear coupling able to

generate stimulated Brillouin scattering [114, 115]. In any case, these effects are not very

well understood theoretically. From all the formulations presented, striction forces are, in

some way, contemplated only by the Einstein-Laub formulation [116] and, consequently,

by Chu formulation, as they share the same force density. For static fields, there is a

phenomenological force density description given by Landau and Lifshitz [117] as

f=−1

2
|E|2∇ε− 1

2
|H|2∇µ+

1

2
∇
[
|E|2ρm

(
∂ε

∂ρm

)
T

]
+

1

2
∇
[
|H|2ρm

(
∂µ

∂ρm

)
T

]
, (2.81)

where ρm is the mass density. Here, the first and second terms are the same present in

Abraham and Minkowski formulations, which act on inhomogeneous regions – usually

the interface between media. The third and fourth terms are the electro- and magne-
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tostriction force densities, respectively. The partial derivatives are calculated at constant

temperature T because the medium’s polarization and magnetization usually depend on

T . Eq. (2.81) is also known as Helmholtz force density [116, 118, 119].

For non-polar and non-magnetic media, we can use the Clausius-Mossotti relation [120]

for the microscopic field correction, providing ρm(∂ε/∂ρm)T = (ε − ε0)(ε + 2ε0)/3. This

procedure has successfully been applied, for example, in Refs. [121, 122]. Notice, however,

that Eq. (2.81) valid only for systems in thermodynamical equilibrium. If the excitation

is time-dependent, the derivatives in Eq. (2.81) must be calculated at constant entropy

for the hypersonic components (see chapter 9 of Ref. [114]). This was employed for

below-optical frequencies, for example, in Ref. [123]. For optical frequencies, however,

measurements of the striction effects are very difficult to perform, since thermal effects

typically dominates over them [124].

In the context discussed, we will present a new formulation – the Microscopic Ampère

formulation –, which is the main result of this work and will be discussed in detail in next

chapter. This formulation will be able to contemplate the striction effects and will have

a clear microscopic interpretation, with no need for phenomenological approaches.



CHAPTER 3

Microscopic Ampère formulation

As we have seen in Chapter 2, every known formulation for the electromagnetic stress-

energy tensor presents its own problems [125]. Generally, every formulation except

Einstein-Laub’s and Chu’s do not account naturally for electro- and magnetostriction

effects. The main problems of each formulation shall be individually discussed next.

First, Minkowski’s formulation totally neglects the bound charges inside the mate-

rial [101]. In fact, had he used the correct charge density, he would have obtained Ampère’s

conventional formulation without the hidden momentum, i.e., Eqs. (2.51) and (2.52). As

Abraham’s formulation only differs from Minkowski’s in the momentum density, it should

share this same problem. Besides, both formulations have not shown any connection to

known models of electromagnetic sources.

Ampère’s formulation does adopt the appropriate classical microscopic model, i.e.,

the electric sources are given as ideal dipoles and the magnetic sources as tiny current

loops [102]. This formulation works properly if we are interested only in the movement of

the center of mass of rigid bodies – indeed, it can be written in covariant form, as shown in

Appendix A; however, as only the macroscopic effects of polarizations and magnetizations

are considered, Ampère’s formulation is not expected to correctly describe the microscopic

force distribution inside materials [71].

The Einstein-Laub formulation, on its turn, has been built considering the usual dipo-

lar approximation for the electromagnetic fields inside matter, but adopts an incorrect

model for the microscopic magnetization mechanism, as it assumes the existence of mag-

netic monopoles, which have never been observed [102]. For non-magnetic materials, its

related force density should be correct; however, there would still remain strong theo-

retical issues, like the absence of Lorentz invariance of the electromagnetic stress-energy

tensor. Although attributing different contributions to light and matter, Chu’s formula-

tion follows the same microscopic model of Einstein and Laub.

Lastly, the MP formulation is very promising as it theoretically contemplates many

23
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aspects of the problem, being particularly consistent with a formal covariant theory of

light in dispersive media [126]. However, it is essentially an extension of Abraham’s

formulation, and so lacks a clear microscopic description of the electromagnetic sources

as well.

In the context just presented, it seems then natural to consider a formulation that

arises from the charge and current distributions related to microscopic electric and mag-

netic dipoles. Such formulation will be developed here, and will be shown to present many

of the characteristics necessary to explain the existing experiments.

3.1 Dipolar sources

In this section and in the following one, we will derive the electromagnetic forces on a

neutral, ideal classical dipole composed of two point charges of opposite value ±q sep-

arated by a distance |d|. The chosen inertial reference frame is the rest frame of the

dipole – consequently, the velocity of the dipole’s center of mass is taken as zero. Under

these circumstances, the static electric potential associated to this charge distribution at

a point r is given by

φ(r) =
1

4πε0

[
q

|r+ d/2|
− q

|r− d/2|

]
, (3.1)

where ε0 the free space permittivity. The origin of the coordinate system is placed in

the mid point between the charges, with the charge +q being at +d/2 and the charge

−q being at −d/2. We assumed, for simplicity, that the charges are located in vacuum,

as the final result will not depend on this choice. In addition, for a neutral dipole as we

consider here, the choice of the origin of the coordinate system does not affect the dipole’s

moment – so, also for simplicity, we choose here the origin as the dipole’s unperturbed

center of mass.

If the observation point r is relatively far from d, i.e., |r| ≫ |d|, to order |d|2/|r|2 we

have [120, 127]

φ(r) =
1

4πε0

p · r̂
r2

, (3.2)

with p = qd being the electric dipole moment and the unit vector r̂ = r/|r|. Notice

that |d| is typically smaller than 1 nm. Under the optical regime we have |r| ∼ λ ∼ 0.1

µm, resulting in a relative error in Eq. (3.2) of order 10−4, which should provide a good

approximation for optical excitations.

Notice that Eq. (3.2) can also be written as

φ(r) = − p

4πε0
·∇

(
1

r

)
, (3.3)
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which can be conveniently inserted into Poisson’s equation for the electric potential,

∇2φ = −ρ/ε0, allowing us to obtain the electric charge density associated to the dipole

as

ρ(r) =
p

4π
·∇

[
∇2

(
1

r

)]
= −(p ·∇)δ3(r), (3.4)

where δ3(r) is the three-dimensional Dirac delta function, i.e., δ3(r) = δ(x)δ(y)δ(z).

An analogous procedure must be carried out for the magnetic dipole moment. The

vector potential of a static point magnetic dipole at rest located at the origin is given by

[120, 127]

A(r) =
µ0

4π

m× r̂

r2
, (3.5)

where m = (1/2)
∫
r× J(r) d3r is the magnetic dipole moment. The magnetic induction

B generated by this magnetic dipole is then

B(r) = ∇×A = µ0mδ3(r)− µ0

4π
m ·∇

(
r̂

r2

)
. (3.6)

The electric current density J is given in this case by Ampère-Maxwell’s law as J =

µ−1
0 ∇×B. Using B given in Eq. (3.6), we can see that

J(r) = ∇×
(
mδ3(r)

)
= −m×∇δ3(r), (3.7)

where the vector property ∇ × (av) = a∇ × v − v ×∇a was used, with a being an

arbitrary scalar function.

At last, a time dependent electric field can cause the electric dipole separation d to vary

in time – even if the dipole’s center of mass remains at rest. This will naturally generate

a local, microscopic electric current, which will interact with the magnetic induction,

providing the time-dependent extra term ṗδ3(r) to the current density J. Mathematically,

this can be shown through the continuity equation:

∇ · J = −∂ρ

∂t
= −(ṗ ·∇)δ3(r), (3.8)

where we used Eq. (3.4). The last term can be rewritten as ∇ · (ṗ · δ3(r)), which readily

provides J = ṗδ3(r), as the divergence of Eq. (3.7) is always zero. An alternative deriva-

tion can be found in Ref. [127].

Notice that we have obtained here the time dependence of the microscopic electromag-

netic sources in the ideal dipolar approximation through a somewhat simple argument:

the application of the continuity equation to the known sources. A formal calculation

would require the consideration of dynamic dipoles from the very start, because their

acceleration can generate radiation-related terms (or, in other words, the solution to the
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continuity equation might not be unique). Besides, the concept of retarded time must

also be included to assure physical causality. Such calculation will be presented in next

section, and it will be shown the sources obtained here are indeed correct.

3.1.1 Time-dependent dipoles

It is well-known that in the Lorenz gauge the electromagnetic potentials φ and A are

described by non-homogeneous wave equations whose formal solutions are [120]

φ(r, t) =
1

4πε0

∫
ρ(r′, tr)

|r− r′|
d3r′ (3.9)

and

A(r, t) =
µ0

4π

∫
J(r′, tr)

|r− r′|
d3r′, (3.10)

where tr = t− |r− r′|/c is the retarded time.

Under the dipolar approximation, the electromagnetic potentials of dynamic ideal

dipoles are given by [128]

φ(r, t) =
1

4πε0

[
p(t0) +

r

c
ṗ(t0)

]
· r̂
r2

(3.11)

and

A(r, t) =
µ0

4π

[
ṗ(t0)

r
+

m(t0)× r̂

r2
+

ṁ(t0)× r̂

cr

]
, (3.12)

where p and m are the now time-dependent electric and magnetic dipole moments, re-

spectively, and t0 = t− r/c is the retarded time at the origin.

The electromagnetic fields are given in terms of the potentials as E = −∇φ − ∂tA

and B = ∇ × A. We can use Gauss’ Law and Ampère-Maxwell’s law to obtain the

time-dependent charge and current densities as

ρ(r, t) = −ε0∇2φ− ε0∇ · ∂tA (3.13)

and

J(r, t) =
1

µ0

∇×∇×A. (3.14)

However, this is not a very convenient procedure, because the implicit dependence of t0

in r makes the calculation much more difficult1. Therefore, it is sufficient to show that

the sources adopted in the last section, namely ρ(r, t) = −(p(t) ·∇)δ3(r) and J(r, t) =

ṗ(t)δ3(r)− (m(t)×∇)δ3(r), generate the correct electromagnetic potentials given in Eqs.

1This calculation was performed in Ref. [71], but for the effective bound sources, which is analo-
gous, but easier.
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(3.11) and (3.12) when calculated using Eqs. (3.9) and (3.10).

We start by calculating the electric potential as

φ(r, t) = − 1

4πε0

∫
(p(tr) ·∇′)δ3(r′)

|r− r′|
d3r′. (3.15)

Using the property
∫
f(x)δ′(x− x0) dx = −f ′(x0), we have

φ(r, t) =
1

4πε0
∇′ ·

(
p(tr)

|r− r′|

)
r′=0

. (3.16)

Notice that, due to the implicit dependence of tr on r, we have ∇′ · p(tr)|r′=0 =

∇̃′ · p(t0) + (r̂/c) · ṗ(t0), where ∇̃′ denotes the nabla operator acting only on the spatial

coordinates. Specifically, in the ideal dipole approximation we have ∇̃′ ·p(t0) = 0, so that

the electric potential is

φ(r, t) =
1

4πε0

[
p(t0) · r̂

r2
+

ṗ(t0) · r̂
cr

]
, (3.17)

which is indeed the same as Eq. (3.11).

For A, we initially have

A(r, t) =
µ0

4π

∫
ṗ(tr)δ

3(r′)− (m(tr)×∇′)δ3(r′)

|r− r′|
d3r′. (3.18)

The first term is trivially integrated to (µ0/4πr)ṗ(t0). The second term is analogous

to Eq. (3.16), with p→m and divergence operator → curl operator. Thus,

A(r, t) =
µ0

4π

[
ṗ(t0)

r
+

m(t0)× r̂

r2
+

ṁ(t0)× r̂

cr

]
, (3.19)

which is equal to Eq. (3.12) and completes our calculation.

The proof shown here tells us that, even in the dynamic regime, if the dipolar ap-

proximation can be suitably applied, the microscopic electromagnetic sources obtained

in the last section are indeed the correct ones. Consequently, by employing the Lorentz

force density to these sources, we should be able to obtain the appropriate force density

distribution inside matter within the adopted approximations.

Lastly, notice that in our system the correction term |r − r′|/c of the retarded time

tr will be extremely small (typically of order λ/c ∼ 10−15 s), so the fields and forces can

safely be evaluated at the regular time t.
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3.2 Electromagnetic force density

We will consider electromagnetic fields inside dielectric materials within the optical band-

width. We suppose here that at this optical length scale the microscopic sources are well

described by the dipolar approximation, as discussed in the last section.

Initially, we want to derive the electromagnetic force spatio-temporal distribution act-

ing on dielectric media with no free charges or currents. Mathematically, we obtained the

electric charge and current densities for ideal dipoles located at the origin as

ρ(r, t) = −(p(t) ·∇)δ3(r) (3.20)

and

J(r, t) = ṗ(t)δ3(r)− (m(t)×∇)δ3(r), (3.21)

where p(t) and m(t) are the dipole’s time-dependent electric and magnetic moment,

respectively.

As discussed in Section 2.1 , the force acting on charged matter is unambiguously

given by the continuous version of the Lorentz force law,

F =

∫
(ρE+ J×B) d3r, (3.22)

which in our case yields

F =

∫ ([
−(p ·∇)δ3(r)

]
E+ ṗδ3(r)×B−

[
(m×∇)δ3(r)

]
×B

)
d3r. (3.23)

We must now calculate Eq. (3.23), which gives the total force on the dielectric. Each

term of the integral will be treated separately. The first term is

F1 = −
∫
[(p ·∇)δ3(r)]E d3r. (3.24)

Writing explicitly the components of the term inside the brackets, we have

F1 = −
∫

[pxδ(y)δ(z)δ
′(x) + pyδ(x)δ(z)δ

′(y) +

pzδ(x)δ(y)δ
′(z)]E d3r. (3.25)
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Integrating each term by parts we obtain

F1 = ∂x(pxE) + ∂y(pyE) + ∂z(pzE)

= (p ·∇)E+ (∇ · p)E. (3.26)

Under the ideal dipolar approximation, the last term can be neglected – so, F1 = (p·∇)E.

The second term of Eq. (3.23) is integrated trivially:

F2 =

∫
[ṗδ3(r)]×B d3r = ṗ×B. (3.27)

The last term of Eq. (3.23) is

F3 = −
∫

[(m×∇)δ3(r)]×B d3r

= −
∫
{[δ(x)δ(y)myδ

′(z)− δ(x)δ(z)mzδ
′(y)]̂i

+ [δ(y)δ(z)mzδ
′(x)− δ(x)δ(y)mxδ

′(z)]̂j

+ [δ(x)δ(z)mxδ
′(y)− δ(y)δ(z)myδ

′(x)]k̂} ×B d3r

= −
∫

C×B d3r, (3.28)

where the auxiliary vector C has been implicitly defined for simplicity and î, ĵ, k̂ denote

the cartesian unit vectors. Performing the cross product, we have

F3 = −
∫

[(CyBz − CzBy )̂i+ (CzBx − CxBz )̂j+ (CxBy − CyBx)k̂] d
3r. (3.29)

The x component of F3 is then

F3,x = −
∫

[δ(y)δ(z)mzδ
′(x)Bz − δ(x)δ(y)mxδ

′(z)Bz

− δ(x)δ(z)mxδ
′(y)By + δ(y)δ(z)myδ

′(x)By] d
3r

= mz∂xBz −mx∂zBz −mx∂yBy +my∂xBy, (3.30)

where we have integrated by parts again. The y and z components are obtained analo-

gously, yielding

F3,y=mx∂yBx−my∂xBx−my∂zBz +mz∂yBz, (3.31)

F3,z=my∂zBy−mz∂yBy−mz∂xBx +mx∂zBx. (3.32)
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To obtain a more compact result, notice that

F3,x − [m×(∇×B)]x − [(m·∇)B]x = −mx∂zBz −mx∂yBy +my∂yBx

+ mz∂zBx −mx∂xBx −my∂yBx −mz∂zBx

= −mx(∇ ·B) = 0. (3.33)

This means that F3,x = [m× (∇×B)]x + [(m ·∇)B]x, and, consequently,

F3 = m× (∇×B) + (m ·∇)B, (3.34)

which completes our calculation.

Summing the three contributions to the force and dividing by the dielectric’s volume,

we obtain the position- and time-dependent force density in the so called Microscopic

Ampère (MA) formulation

fMA = (P ·∇)E+ Ṗ×B+M× (∇×B) + (M ·∇)B, (3.35)

where the fields are the macroscopic ones evaluated at the location of the dipoles.

Eq. (3.35) was first given, to our knowledge, in Ref. [71] – but it was not explored in

the context of the Abraham-Minkowski controversy. It is compatible with a pure, ideal

dipole located at the origin and at rest in its own frame. Explicitly, the time derivative

term is

Ṗ×B =
∂P

∂t
×B, (3.36)

as the dipole is assumed to be at rest.

Now, we want to rewrite Eq. (3.35) in a form which it is most conveniently interpreted

in the context of the Abraham-Minkowski controversy. This task will require a lot of

vector algebra. We start by using the vector property ∇ (U ·V) = (U · ∇)V + (V ·
∇)U+U× (∇×V) +V × (∇×U), which allows us to write

(P ·∇)E = ∇ (P · E)− (E ·∇)P− E× (∇×P)−P× (∇× E) (3.37)

and

M× (∇×B) + (M ·∇)B = ∇ (M ·B)−B× (∇×M)− (B ·∇)M. (3.38)

For linear isotropic media, the medium responses are given by P = ε0χeE and

M = χmH, where χe and χm are the electric and magnetic susceptibilities, respectively.
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Working on Eq. (3.37), we have

(P ·∇)E = ε0∇
(
χe|E|2

)
− ε0 (E ·∇) (χeE)− ε0E× (∇× (χeE))

−ε0χeE× (∇× E) . (3.39)

The first term on the right hand side of this equation is

ε0∇
(
χe|E|2

)
= ε0|E|2∇χe + ε0χe∇|E|2. (3.40)

The second term is

ε0 (E ·∇) (χeE) = ε0χe (E ·∇)E+ ε0 (E ·∇χe)E. (3.41)

The third term is

ε0E×(∇×(χeE)) = ε0E×(χe∇×E+ (∇χe)×E)

= −P× ∂B

∂t
+ ε0|E|2∇χe − ε0 (E ·∇χe)E, (3.42)

where the vector property a× (b× c) = (a · c)b− (a · b)c was used.

The last term on Eq. (3.39) can be described by Faraday’s law as well, so that

(P ·∇)E = ε0|E|2∇χe + ε0χe∇|E|2 − ε0χe (E ·∇)E− ε0 (E ·∇χe)E

+ P× ∂B

∂t
− ε0|E|2∇χe + ε0 (E ·∇χe)E+P× ∂B

∂t
. (3.43)

Simplifying the last equation, we obtain

(P ·∇)E =
ε0(εr − 1)

2
∇|E|2 +P× ∂B

∂t
, (3.44)

where we used ∇|E|2/2 = (E ·∇)E+ E× (∇× E).

Adding Eq. (3.36) to last equation yields

(P ·∇)E+ Ṗ×B =
ε0(εr − 1)

2
∇|E|2 + ∂

∂t
(P×B) . (3.45)

Proceeding analogously for Eq. (3.38), we have

M× (∇×B) + (M ·∇)B = ∇ (χmH · µH)− µH× (∇× χmH)

− (µH ·∇) (χmH) , (3.46)

where B = µ0(H+M) = µH was used.
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The first term on the right hand side of last equation is

∇ (χmH · µH) = (2µr−1)|H|2∇µ+ µ(µr−1)∇|H|2. (3.47)

The second term is

µH×(∇×χmH) = µH× (χm∇×H+ (∇χm)×H)

= µχmH×(∇×H) + µH×(∇χm×H)

= µχmH×(∇×H) + µ|H|2∇χm−(µH·∇χm)H. (3.48)

The third term is

(µH·∇) (χmH) = µ (H·∇χm)H+ µχm (H·∇)H. (3.49)

Summing the three terms, Eq. (3.38) becomes

M×(∇×B) + (M·∇)B = µ(µr−1)∇|H|2 − µ(µr−1) (H·∇)H

− µ(µr−1)H×(∇×H)+(µr−1)|H|2∇µ, (3.50)

which, using ∇|H|2/2 = (H ·∇)H+H× (∇×H), is simplified to

M× (∇×B) + (M·∇)B = (µr−1)|H|2∇µ+
µ(µr − 1)

2
∇|H|2. (3.51)

The force density in linear media is then the sum of Eqs. (3.45) and (3.51), namely

fMA =
ε0(εr − 1)

2
∇|E|2 + (µr −1)|H|2∇µ+

µ(µr − 1)

2
∇|H|2 + ∂

∂t
(P×B) . (3.52)

The last term in this equation is the Röntgen interaction, which naturally appeared in our

non-relativistic derivation for a dipole at rest, as anticipated in Section 2.2. If we employed

a relativistic derivation for a moving dipole from the very beginning, there would be an

extra contribution – the hidden momentum –, as shown in Ref. [82]. An alternative non-

relativistic derivation for the force density (in non-magnetic media) where the dipole is

moving can be found in Ref. [92].

As discussed in Section 2.2, when switching to the laboratory frame we need to add

the hidden momentum contribution to Eq. (3.52) as fh ≈ ∂t(E ×M)/c2, where the time

derivative approximation takes place because the dipole’s velocity (as measured in the
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laboratory frame) is much smaller than c. The force density is then

fMA =
ε0(εr − 1)

2
∇|E|2 + (µr −1)|H|2∇µ+

µ(µr − 1)

2
∇|H|2

+
n2 − 1

c2
∂

∂t
(E×H) , (3.53)

where it is assumed that ε and µ do not depend on time. A simple rearrangement of the

gradients as products yields, at last,

fMA =
1

2
∇ (P·E)+1

2
∇ (M·B)− 1

2
|E|2∇ε− 1

2
|H|2∇µ+

n2−1
c2

∂

∂t
(E×H) . (3.54)

This force density equation is given in the laboratory frame. It is valid for linear, isotropic

inhomogeneous media, with ε and µ independent of time (i.e., no dispersion). The pres-

ence of free sources would generate the extra terms ρfE and Jf ×B in Eq. (3.22), and can

be included if necessary. We can identify the first and second terms as the electrostric-

tion and magnetostriction force densities, respectively. The third and fourth terms are

the usual Abraham-Minkowski force, which occur in non-homogeneous regions, and the

last term is the famous Abraham force. This equation contemplates almost every aspect

of the reported experiments (as will be discussed in Sec. 3.3), and arises naturally from

a clear and simple microscopic model, with no need for phenomenological approaches.

Table 3.1 compares the electromagnetic force density described in this section with the

main existing electromagnetic formulations.

Table 3.1: Comparison between the Microscopic Ampère force density and other formu-
lations.

Formulation Difference in force density

Minkowski fM − fMA = −1
2
∇(P·E)− 1

2
∇(M·B)− n2−1

c2
∂
∂t
(E×H)

Abraham fAb − fMA = −1
2
∇(P · E)− 1

2
∇(M ·B)

Conventional Ampère fA − fMA = −
←→
∇ ·(P⊗ E) +

←→
∇ ·(B⊗M)−∇(M ·B)

Einstein-Lauba fEL − fMA = −µ0

2
∇|M|2

Chub fC − fMA = −µ0

2
∇|M|2

Mass-polaritonc fAb − fMA = −1
2
∇(P · E)− 1

2
∇(M ·B)

a Here it is convenient to use fEL in the form fEL = fAb +∇(P ·E+ µ0M ·H)/2 [116].
b Considering the total stress-energy tensor of field plus matter.
c Obtained from the field part of the total mass-polariton stress–energy tensor.
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3.2.1 Radiation pressure

We will now calculate the radiation pressure, Prad, at a flat dielectric interface assuming a

laser beam with azimuthal symmetry about the propagation axis. Notice the deformations

induced by radiation pressure in dielectric liquids are typically bulges of height of order

10 nm [44, 48, 50, 56, 129], rapidly decreasing over a length of about one beam waist w0,

which is usually of order 100 µm. Thus, considering the interface flat even when the fields

are acting on it is certainly a good approximation.

Being an isotropic quantity, the radiation pressure will have two contributions in this

case: one due to the discontinuity of refractive index and P and M in the direction

normal to the interface and another one due to the difference in the radial forces (electro-

and magnetostriction effects) in each medium. The first contribution can be obtained

from Eq. (3.54) by properly integrating the normal component of the force density. For

example, for a beam propagating in z direction incident from a non-magnetic, linear

and isotropic dielectric medium into another one through a flat interface at z0 = 0, as

illustrated in Fig. (3.1a), we have

Pz = lim
δ→0

∫ +δ

−δ

fz dz

= lim
δ→0

∫ +δ

−δ

[
1

2

∂

∂z
(P · E)− 1

2
|E|2 ∂ε

∂z

]
dz

=

[
1

2
(P · E)

]z=0+

z=0−
− ε2 − ε1

2

(
|E|2avg

)
. (3.55)

We assumed in Eq. (3.55) there are no free charges at the dielectric interface. Here, |E|2avg
is the average of the squared electric field magnitude across the interface.

The second term of the radiation pressure at the interface is related to the radial

direction, and for normal incidence is given by

Pr = −
[∫

fr dr

]z=0+

z=0−
= −

[
1

2
(P · E)

]z=0+

z=0−
(3.56)

where the same assumptions were used again and the function inside the brackets was

implicitly calculated at fixed r.

Summing the two contributions, we have the radiation pressure at the flat dielectric

interface as

Prad = Pz + Pr = −
(ε2 − ε1)

2
|E|2avg. (3.57)
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Applying Maxwell’s equations boundary conditions, we have then

Prad = −(ε2 − ε1)

2

[
E2

x + E2
y +

(
1 +

ε2t
ε2i

)
E2

z,t

2

]
. (3.58)

Here Ez,t is the transmitted field component normal to the interface. As this component

is not continuous across the interface, we averaged its squared magnitude with a simple

arithmetic mean. The tangential components Ex and Ey are continuous across the in-

terface, and therefore do not need the subscript indicating the current medium. Notice

a very important subtlety introduced by this equation: the permittivities ε1 and ε2 are

related to the direction of z, which in our convention always points from medium 1 to

medium 2. The gradient ∇ε is calculated accordingly, resulting in the term outside the

brackets in Eq. (3.58). On the other hand, the permittivities εi and εt are related to the

beam propagation direction – i.e., they refer to incident and transmitted components.

Thus, if the beam is propagating in the z direction, we have εi = ε1 and εt = ε2, as in

Fig. 3.1a; if the propagation direction is reversed, we have εt = ε1 and εi = ε2, as in

Fig. 3.1b.

a

Medium 1

Medium 2

z

z0

εi = ε1

εt = ε2

b

Medium 1

Medium 2

z

z0

εt = ε1

εi = ε2

Figure 3.1: Convention for permittivities used in radiation pressure equation, Eq. (3.58),
according to beam incidence direction. In (a), the beam propagates in z direction, while
in (b) the propagation direction is reversed.

By using the conventions just described, Eq. (3.58) is then valid for any beam po-

larization, incidence angle and propagation direction. Specifically, for normal incidences

we have E2
z ≪ E2

x + E2
y , even for typical focused gaussian beams. This leads to Prad ≈

−(ε2 − ε1)(E
2
x + E2

y)/2, which is the widely known Abraham-Minkowski radiation pres-

sure. Also, we see that keeping normal incidence and reversing beam propagation direction

would generate the same pressure equation.

For oblique beam incidences, we must properly account the different reflection and

transmission coefficients for each polarization. We will consider the beam is locally a

plane wave – which is a good approximation, since even for focused gaussian beams the

field components in directions other than the polarization one are typically negligible. In
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this condition, we can apply the widely known Fresnel equations to describe the reflected

and transmitted field amplitudes (see Appendix B). First, for s polarization, the field is by

definition perpendicular to the plane of incidence. In this case, we have in our convention

Ez = 0, which generates

P(s)
rad = −(ε2 − ε1)

2
t2s (θi)E

2
0 , (3.59)

where E0 is the field amplitude, ts is the transmission coefficient for s polarization and θi

is the incident angle relative to the interface’s normal direction.

For p polarized beams, we have a non-zero normal component, so that the radiation

pressure becomes

P(p)
rad = −(ε2 − ε1)

2
E2

0

[
t2p(θi) cos

2 θt +
(1 + rp(θi))

2 sin2 θi + t2p(θi) sin
2 θt

2

]
, (3.60)

where tp and rp are the transmission and reflection coefficients for p polarization, respec-

tively, and θt = sin−1((n1/n2) sin θi) is the transmitted (refracted) angle.

Notice that when considering a fluid incompressible we are assuming any information

about deformations in the fluid propagates instantaneously – thus, no transient response

is present. Indeed, at equilibrium, applying the divergence operator to the Navier-Stokes

equation for an incompressible fluid at rest yields [130]

∇2P = ∇ · fem, (3.61)

where fem is the electromagnetic body force and P is the fluid’s pressure. This is an

elliptic partial differential equation for P , known as Poisson’s equation. It is well-known

to possess unique solutions (up to an additive constant) for a very broad class of boundary

conditions. Thus, in this situation, the Abraham-Minkowski pressure, Eq. (3.58) with

Ez = 0, arises naturally as a boundary condition uniquely related to the divergence of the

body force density from Eq. (3.54). On the other hand, if the fluid develops a position-

dependent velocity field, the pressure at the surface can not be uniquely related to the

body force anymore, as there will be another source term in Eq. (3.61). In fact, the

pressure (and consequently the surface deformation) can even change signs, as shown in

Ref. [46]. This is a possible explanation to the Abraham-type deformation of a free fluid

surface reported in Ref. [45].

3.3 Comparison to experiments

As we have seen in Section 3.2, the MA formulation accounts for the electro- and mag-

netostriction effects, presents a radiation pressure of the Abraham-Minkowski form and
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has an Abraham-type momentum density. These fundamental properties will be used

to analyze the main existing experiments related to electromagnetic force density. For

better organization, these experiments are grouped in four categories: radiation pressure

experiments, photon momentum experiments, bulk force experiments and total force ex-

periments.

3.3.1 Radiation pressure experiments

The surface deformation of water under normal laser incidence was successfully explained

using the radiation pressure given in Eq. (3.58), both in old and recent measurements

[30, 44, 47] – specifically, in Ref. [30] the reversed beam propagation direction was also

considered. An interface of different fluids close to the critical point was studied in Ref. [33]

and the observed surface deformations were also well described by Eq. (3.58).

The radiation pressure for oblique incidence adopted in the literature is [111, 131–133]

Prad =
niI

c
cos2 θi

[
1 +R(θi)−

tan θi
tan θt

T (θi)

]
, (3.62)

where ni is the incidence medium’s refractive index, I is the beam intensity and R and T

are the interface’s reflectance and transmittance, respectively. This equation contemplates

both polarizations in a single equation by using the appropriate R and T , and has been

applied to explain the experiments reported in Refs. [48, 50, 55, 111, 131]. However,

this equation does not account properly for the discontinuity of the normal field at the

interface for p polarization, as shown in Appendix C.

For an air-water interface, Fig. (3.2) shows the radiation pressures from Eqs. (3.60)

and (3.62) for both incidence directions. The behavior is qualitatively the same, but the

magnitude of the corrected version is about 5–10% larger. At first sight, our suggestion

seems to be compatible with the deformations observed in Refs. [48, 50, 55], but further

investigations are necessary.
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a

b

Figure 3.2: Radiation pressure for oblique incidence and p-polarized beams according to
the literature, Eq. (3.62), and to our suggestion, Eq. (3.60). In (a) we have an water-to-air
incidence and the radiation pressure is calculated for angles smaller than the critical angle
for total internal reflection, θc ≈ 48.77 ◦. In (b) we have an air-to-water incidence. The
result for s polarization is also shown for completeness. Beam intensity is 1.0 W/m². The
relative permittivities used for water and air were 1.769 and 1.0, respectively.

3.3.2 Photon momentum experiments

The recoil due to the radiation pressure on a submerged mirror was measured twice [28,

29], and the results were directly proportional to the refractive index of the background

dielectric media – i.e., of Minkowski’s form. This can effectively be explained by the

Doppler-shifted recoil of the mirror, while the field retains Abraham’s form of momentum

[101]. To show this, consider an atom of mass m moving inside a dielectric with velocity

v. The atom is assumed to have a sharp transition frequency ω0 and to be moving

away from the source of electromagnetic fields. In the reference frame of the atom, the

electromagnetic field is observed to have a Doppler-shifted frequency ω(1− nv/c), where

n is the host dielectric refractive index and ω is the frequency of the excitation field. The



3.3 Comparison to experiments 39

atom can then absorb a photon only if ω(1 − nv/c) = ω0. Now, if the velocity v of the

atom is not relativistic – which is typically the case –, we can expand (1 − nv/c)−1 as a

geometric series, obtaining, to order nv/c,

ω ≈ ω0(1 + nv/c). (3.63)

The non-relativistic conservation of energy tells us that ℏω +mv2/2 = ℏω0 +mv′2/2,

where v′ is the velocity of the atom after the absorption of the photon. We have then

m

2

(
v′2 − v2

)
≈ mv(v′ − v) = ℏ(ω − ω0). (3.64)

In the above equation, we approximated (v′2− v2)/2 as v(v′− v), i.e, we took v′+ v ≈ 2v.

The momentum conservation in this case is simply p+mv = mv′, where p is the photon

momentum. From this we have p/m = (v′ − v), which is inserted in Eq. (3.64), yielding

ω ≈ ω0 + pv/ℏ. Using this result and Eq. (3.63), we obtain

p =
nℏω0

c
. (3.65)

At last, considering ω ≈ ω0 in the last equation, we see the photon momentum is, to first

order in nv/c, linear in n. Recall that this is also exactly the momentum of the mass-

polariton quasi-particle proposed by the formulation described in Section 2.3.6. The

Doppler-shifted recoil approach can also be applied to Ref. [34], where the recoil of ultra

cold atoms in a Bose-Einstein condensate due to radiation pressure was observed to be

compatible with Minkowski momentum.

There is an old measurement of the photon drag effect in semiconductors that agreed

with Minkowski’s momentum [32], and the Doppler-shifted recoil explanation seems to

again be in place. This also applies to most cases reported in Ref. [54], where the same

effect was measured in thin metal films. It is important to notice, however, that one

specific measurement in this last reference showed a negative dependence on Minkowski’s

momentum – a result that, according to the authors, still lacks theoretical explanation

regarding the optical transduction and microscopic momentum exchange mechanisms.

3.3.3 Bulk force experiments

The electrostriction effect was measured inside a fluid in Refs. [121, 122] using high-

intensity static fields (the latter one in a microgravity environment) and the results agreed

with Helmholtz formulation [116, 118, 119]. These results can also be explained by the

MA formulation if we consider the local-field correction in the form of the Clausius-

Mossotti relation [114, 120, 134, 135]. For optical excitation, the local-field correction
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is typically given as the Lorentz-Lorenz relation [136]. However, a recent measurement

of the the electrostriction effect in water for laser excitation at optical frequency was

very well described by the MA formulation without the Lorentz-Lorenz correction to

the local-field [129]. This result can be justified by a phenomenological argumentation

presented in Ref. [137], where this local-field correction is absent due to the optical elec-

trostriction effect causing energetically non-conservative changes in the dipole moments

through the variation of the material’s local mass density. Notice that, as shown in the

last appendix of Ref. [129], for linear media we have ρm∂εr/∂ρm = εr−1, which generates

ε0∇ [(ρm∂εr/∂ρm)T |E|2/2] = ∇ (P · E) /2. We stress, however, that this is just an acci-

dental coincidence – although the electrostriction effect would in this case end up with

the same mathematical form in both Helmholtz and MA formulations, the two equations

are built under very different assumptions.

A quite intricate measurement of the electromagnetic force inside optical fibers was

reported recently in Ref. [57]. It was concluded that the force density has a different

symmetry than the expected from MA formulation for this case. It should be mentioned

that the irregular position-dependent refractive index in the optical fiber due to its fab-

rication process may play a significant role in the force density symmetry through the

terms proportional to ∇ε and ∇µ.

In Ref. [49] the observation of the Abraham force was reported in a liquid-filled hol-

low optical fiber, where the Abraham-Minkowski pressure at the free liquid surface was

claimed to be carefully suppressed by the geometry of the waveguide. We notice that

striction forces were not considered in the analysis of the results, where it is expected

they would generate deformations with contrary direction to the observed one. We also

notice there would be an additional Abraham-Minkowski force at the ring core/liquid

interface, and adhesion effects are also expected to be important – indeed, these last two

forces should partially cancel the striction force. If this cancellation is significant, the re-

maining force term according to MA formulation would be Abraham’s one, in agreement

with the authors’ conclusions. Alternatively, all the effects but Abraham’s force could

also be relatively very small. The presence of more than one mode in the excitation wave

can also be relevant.

3.3.4 Total force experiments

Recall that electro- and magnetostriction effects should not contribute to the macroscopic

movement of the body, as discussed in Section 2.4. Thus, the total force acting on a di-

electric body should be composed of only the time-derivative term in Eq. (3.54), i.e.,

Abraham’s force. The movement of a torsion pendulum induced by the simultaneous

application of low frequency time-dependent electric fields and static magnetic fields was
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measured in Ref. [31], and agreed with Abraham’s force. The experiment and results

reported in Ref. [43] are similar, but more detailed as it also covered the case of elec-

tromagnetic forces generated by static electric fields together with time-varying magnetic

fields. At last, in Ref. [42], the pressure variation of a confined gas due to the presence

of electromagnetic fields was measured to be compatible with Abraham’s force. All these

results are in agreement with MA formulation.

3.4 Stress-energy tensor

The MA force density was derived in Section 3.2 using three covariant elements: Maxwell’s

equations, the Lorentz force density and the dipolar four-current – thus, it is expected the

resultant force and energy continuity equations can be associated to a true electromagnetic

tensor. This same argument is valid for the conventional Ampère formulation as well, as

we have the same three elements, but with a different four-current. In fact, the derivation

from Section 2.3.3 can be applied to any four-current configuration, as we can always

substitute the sources in Lorentz force law by the electromagnetic fields through Gauss’

and Ampère-Maxwell’s law. We therefore argue that Maxwell’s stress-energy tensor must

be valid for any four-current configuration. In particular, for MA formulation we have

then
←→
T MA =

1

2

(
ϵ0|E|2 + µ−1

0 |B|2
)←→

I −ϵ0E⊗ E−µ−1
0 B⊗B, (3.66)

gMA = ε0E×B, (3.67)

SMA = µ−1
0 E×B, (3.68)

WMA =
1

2

(
ϵ0|E|2 + µ−1

0 |B|2
)
. (3.69)

Notice the hidden momentum does not need to be explicitly added to the stress-energy

tensor components, as it arises naturally from the correct relativistic derivation of the

continuity equations from them – indeed, explicitly adding the hidden momentum to

these components would make the stress-energy tensor not invariant.

These last four equations are equal to Ampère’s conventional formulation – the differ-

ence is, of course, in the continuity equations: the force density fMA given in Eq. (3.54)

and the power density ϕMA = E · J, with J given in Eq. (3.21). This last equation still

lacks its explicit form in terms of the fields, which will be calculated now. We start by

writing the total power as

ΦMA =

∫
E ·
[
ṗδ3(r)−m×∇δ3(r)

]
d3r. (3.70)



3.4 Stress-energy tensor 42

Adopting index notation for the last term, this equation is given by

ΦMA = ṗ · E−
∫

Eiϵijkmj∂kδ
3(r) d3r, (3.71)

where ϵijk is the Levi-Civita symbol and the summations in repeated indices are implied.

Integrating by parts we obtain

ΦMA = ṗ · E+ ϵijkmj∂kEi, (3.72)

where the fields are calculated at the dipole’s position. The second term in the right

hand side is, in vector notation, equal to m · (∇× E). Invoking Faraday’s law, we have

ΦMA = ṗ · E−m · ∂tB and, consequently,

ϕMA = Ṗ · E−M · ∂
∂t

B. (3.73)

As before, we take dP/ dt ≈ ∂tP. Recalling the medium is assumed non-dispersive,

we have then

ϕMA =
1

2

∂

∂t
(P · E−M ·B) . (3.74)

The four-continuity equation associated to MA formulation, −∂νT µν
MA = fµ

MA, is then

completely defined.

3.4.1 Relation to MP formulation

From the discussion developed in Section 3.3, we can see the MA force density is capable

of describing the vast majority of experiments up to date. It also has the advantage of

being derived from a well-known microscopic model – the dipolar sources. On the other

hand, we have seen in Section 2.3.6 that, in order to fulfill the covariance requirements,

there must be a coupled state of field and matter propagating through the dielectric. This

is, of course, the basis of the MP formulation. However, MP formulation was built using

Abraham’s force density, which does not contemplate striction effects, and thus can not

explain experiments such as the one reported in Ref. [129]. Another important fact is that

the few experiments that were able to measure the photon momentum in matter, discussed

in Section 3.3.2, showed a linear dependence on the medium’s refractive index, exactly

as predicted by the coupled mass-polariton state. Thus, it seems natural to consider the

possibility of properly incorporating the MA force density into the MP formulation.

As we know, the MP formulation adopts, in the laboratory frame, Abraham’s force

density and the stress-energy tensor relation TMP = TAb+TMDW, assuming the medium is

in mechanical equilibrium. On the other hand, as shown in Table 3.1, MA force density
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is the sum of Abraham’s force density plus electro- and magnetostriction effects, i.e.,

fMA = fAb +∇(P · E)/2 +∇(M ·B)/2. (3.75)

This last equation should be equivalent to

←→
∇ ·

(←→
T Ab −

←→
T MA

)
+

∂

∂t
(gAb − gMA) =

1

2

←→
∇ ·

[
(P · E)

←→
I + (M ·B)

←→
I
]
. (3.76)

It can be verified that Eq. (3.76) does not hold. What is the problem? In the process

of obtaining fAb from fAb = −
←→
∇ ·
←→
T Ab−∂gAb/∂t, Gauss’ and Ampère-Maxwell’s laws are

used in their macroscopic forms, Eqs. (2.5) and (2.7) respectively. These forms can not

be applied for microscopic forces, as effective bound sources are automatically assumed.

They are only suitable for the macroscopic (conventional) Ampère formulation, described

in Section 2.3.3. Thus, in general, we have fAb ̸= −
←→
∇ ·
←→
T Ab − ∂gAb/∂t. This problem

also happens to Einstein-Laub formulation, i.e., in general fEL ̸= −
←→
∇ ·
←→
T EL − ∂gEL/∂t,

as previously pointed out in the last paragraph of Section 2.3.4. Again, we stress the only

way to treat the sources generically, be them bound and/or free, is by means of Maxwell’s

stress-energy tensor, as discussed in Section 3.4.

In the context presented, we propose the correct form of the MP tensor should be

TMP = TMA + TMDW. (3.77)

Here, TMDW represents the difference in the material’s stress-energy tensor after and before

the electromagnetic fields are applied, as described in Section 2.3.6. For example, if the

medium is a perfect fluid in thermodynamical equilibrium, its stress-energy tensor in flat

space-time is [138]

T µν
mat = ρ0U

µUν + P
(
ηµν +

UµUν

c2

)
, (3.78)

where ρ0 is the proper mass density, P is the pressure and Uµ = γ(c,u) is the four-velocity,

with γ = (1− |u|2/c2)−1/2. For a solid elastic medium, the spatial part of Tmat is given in

a more complicate way in terms of the material’s strain – see Ref. [139] for example.

The electromagnetic field and the material must, in our case, form a closed system.

From Section 3.4, we know the electromagnetic fields deliver energy to the dielectric

through ϕMA given in Eq. (3.74). As we have in this equation a partial time derivative, we

can then conveniently assign to the material the amount of energy density (P·E−M·B)/2.

With this choice, by summing the field and the material energy density we obtain, apart

from the rest energy term, (ε0|E|2 + µ−1
0 |B|2 +P ·E−M ·B)/2, which is exactly WAb =

(D ·E+B ·H)/2, the well-known electromagnetic energy density inside linear, lossless and
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non-dispersive dielectrics. With the aid of Eq. (2.80), the continuity equation for energy

becomes

∂νT 0ν
MP =

∂

∂t

(
1

2
D · E+

1

2
B ·H+ ρMDWc2

)
+∇ ·

(
E×H+ ρMDWvMDWc2

)
= 0. (3.79)

Here, the hidden momentum has been added to the electromagnetic part of S by the

same reasoning as in Eq. (3.53). This means we are working with quantities as measured

in the laboratory frame, initially keeping contributions only to order |va|/c, where va

is the atomic velocity. This approximation is also applied to the MDW tensor. Notice

that, as the motion of the atoms is accelerated due to the external forces, their proper

frames are not inertial reference frames – the velocity va is actually the relative velocity

between a local inertial reference frame, moving along with the atoms, and the laboratory

frame [99]. Also notice that Eq. (3.79) has the same form of the original MP formulation,

but its interpretation is slightly different, as we will shortly see. The momentum continuity

equation, on its turn, is now given by

3∑
i=1

∂νT iν
MP = fMA + fb +

←→
∇ · (ρMDWvMDW ⊗ va) +

∂

∂t
(ρMDWvMDW) = 0, (3.80)

where fb denotes the internal body force density in the medium – in our context, typically

elastic forces for solid media and pressure gradients for fluid media. The difference to the

original MP formulation is, of course, the electro- and magnetostriction forces contained

in fMA.

What role do the striction forces play in the energy continuity equation? From the

definition of potential energy, the stress acting inside the material due to the electromag-

netic fields can be found from the derivative of WAb with respect to the associated strain

component in solid media [140]. It can be shown [137] such calculation leads to the force

density ∇(P · E + M · B)/2, i.e., the work done by the electromagnetic field generates

strain inside the material, which is manifested through the electro- and magnetostricion

effects. The same occurs for fluid media, with strain being substituted by a local pressure

increase. We can then see that striction effects are essentially pure stresses, and so they

do not change the momentum transfer inside the material, which occurs exclusively in the

pulse propagation direction. This is consistent with the discrete picture of light, where

every incident photon on the dielectric has its momentum in the propagation direction.

Eq. (3.77) is compatible with the opto-elastic simulations from Ref. [95] – striction

effects would be balanced by elastic forces, while the remaining force density is the dy-

namical part, equal to fAb. In turn, this force density is responsible for the previously

unrecognized mass density wave propagating along with the light pulse. Besides, as both
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TMA and TMDW are true tensors, the covariance of the proposed theory would remain

intact.

Note that, as just shown, in mechanical equilibrium the equations for energy, force and

momentum in the dielectric are equal to Abraham’s formulation – however, we emphasize

they do not originate from Abraham’s stress-energy tensor, as this tensor necessarily

employs macroscopic sources in its application. Therefore, the argumentation developed

here clarifies the true origin of Abraham’s force density in linear, isotropic, lossless and

non-dispersive dielectric media: it results from the electromagnetic force acting on moving

induced dipoles partially counter-balanced by internal mechanical stresses.



CHAPTER 4

Numerical calculation of the

electromagnetic force density

Although much can be qualitatively inferred from the MA force density as given in

Eq. (3.54), quantitative investigations are also of great interest. Specifically, knowing

the relative magnitude of the momentum term (the Abraham force) compared to the in-

ternal stress (striction effects) is very important to design experiments aiming to measure

the former inside materials. Recall that knowing this contribution is necessary to obtain

the mass transferred, δm, and the MP momentum, pMP, and eventually confirm our pro-

posed theory.

Due to the broad control possibility of the generated excitation, it is a very com-

mon practice in experimental investigations of light-matter interactions to employ laser

sources. These laser beams are frequently applied as focused beams on the dielectric to

provide greater intensities and, therefore, enhance the desired effects. To calculate the

electromagnetic force density inside the sample material we must, of course, know the elec-

tromagnetic fields as a function of position and time. As analytical solutions of Maxwell’s

equations are available only in very specific circumstances, we must resort to numerical

calculations. This chapter will describe the main numerical techniques employed to obtain

such fields and discuss some of the related computational aspects. We will first derive

equations for monochromatic focused laser beams propagating in a homogeneous dielec-

tric medium, later adding an interface and a second dielectric medium. An extension to

quasi-monochromatic beams is then presented, providing a full numerical procedure to

calculate the time- and position-dependent electromagnetic fields associated to focused

laser beams in optical regime. From these fields, we show lastly a new method to obtain

the related numerical electromagnetic force density in a semi-analytical way.

46
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4.1 Angular Spectrum Representation

The Angular Spectrum Representation (ASR), also known as Angular Spectrum Method,

is a formalism developed for the description of wave propagation in homogeneous me-

dia. It can be used for both electromagnetic and acoustic waves (see Refs. [141–144]

for example). In particular, for applications in optics, the electromagnetic fields are ob-

tained through sums of plane waves and evanescent waves, which are simple solutions of

Maxwell’s equations. The theoretical description of this method and its development is

based on Refs. [145–147].

Let us consider a monochromatic electric field with angular frequency ω, according to

the convention

E(r, t) = Re{E(r) e− iωt}, (4.1)

occupying the homogeneous region z ≥ 0 of refractive index n real and constant. If

all the electromagnetic sources are outside this region, the field E(r) must satisfy the

homogeneous wave equation – which, in this case, reduces to the Helmholtz equation as

(
∇2 + k2

)
E(r) = 0, (4.2)

where k = (ω/c)n is the wavenumber and c is the speed of light in vacuum. Let z =

constant be an arbitrary plane inside the region z ≥ 0. At this plane, the field E(r) can

be described in terms of a two-dimensional Fourier transform

E(x, y, z) =

+∞∫∫
−∞

Ê(kx, ky; z) e
i(kxx+kyy) dkx dky, (4.3)

where x and y are the transverse coordinates to z and kx and ky are their reciprocal

coordinates, respectively. The term Ê(kx, ky; z) is given by the usual Fourier transform

relations

Ê(kx, ky; z) =
1

4π2

+∞∫∫
−∞

E(x, y, z) e− i(kxx+kyy) dx dy. (4.4)

Eq. (4.2) can be written in terms of Eq. (4.3) as

+∞∫∫
−∞

(
∇2+k2

)
Ê(kx, ky; z) e

i(kxx+kyy)dkxdky = 0, (4.5)
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yielding

+∞∫∫
−∞

[
∂2Êj(kx, ky; z)

∂z2
+ (k2 − k2

x − k2
y)Êj(kx, ky; z)

]
e i(kxx+kyy) dkx dky = 0, (4.6)

where j = x, y, z is used to denote the three components of Ê(kx, ky; z). As Eq. (4.6)

must be valid for all x and y, its integrand must then be zero, yielding

∂2Êj(kx, ky; z)

∂z2
+ (k2 − k2

x − k2
y)Êj(kx, ky; z) = 0. (4.7)

The general solution of Eq. (4.7) is

Ê(kx, ky; z) = A(kx, ky) e
ikz(kx,ky)z +B(kx, ky) e

− ikz(kx,ky)z, (4.8)

with

kz(kx, ky) =
√

k2 − k2
x − k2

y (4.9)

as the reciprocal coordinate of z. Substituting Eq. (4.8) into Eq. (4.3), the integral form

for the electric field reads

E(x, y, z) =

+∞∫∫
−∞

A(kx, ky) e
i(kxx+kyy+kzz)dkx dky

+

+∞∫∫
−∞

B(kx, ky) e
i(kxx+kyy−kzz)dkx dky. (4.10)

The first integral in Eq. (4.10) represents a superposition of waves propagating in +z

direction, while the second integral represents a superposition of waves propagating in −z
direction. Within the region of interest, z ≥ 0, the asymptotic form of the electric field

must represent an outgoing wave and be a square integrable function. These boundary

conditions lead to B(kx, ky) = 0, and Eq. (4.10) reduces to

E(x, y, z) =

+∞∫∫
−∞

A(kx, ky) e
i(kxx+kyy+kzz) dkx dky. (4.11)

This form resembles an usual Fourier transform description – however, notice that only

two coordinates were transformed and Eq. (4.9) imposes a restriction on the kz domain.
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Comparing Eqs. (4.11) and (4.8), the amplitude A(kx, ky) can be written as

A(kx, ky) = Ê(kx, ky; z = 0), (4.12)

leading to

Ê(kx, ky; z) = Ê(kx, ky; z = 0) e ikzz. (4.13)

This equation shows how the spatial Fourier spectrum in an arbitrary plane z = constant

can be obtained through the multiplication of the spatial Fourier spectrum at the bound-

ary z = 0 by the term e ikzz, which in this context is known as optical propagator.

Substituting Eq. (4.12) into Eq. (4.10), E(x, y, z) is given by

E(x, y, z)=

+∞∫∫
−∞

Ê(kx, ky; 0) e
i(kxx+kyy+kzz)dkx dky, (4.14)

which is known as Angular Spectrum Representation. This equation tells us how the

electric field spectrum at the boundary z = 0 can be transformed into the propagated

electric field at any point (x, y, z) for z > 0. Notice that, as seen in Fig. (4.1), the optical

propagator has two distinct behaviors depending on kz: for k
2 ≤ k2

x + k2
y, the propagator

is represented by an oscillatory function, while for k2 > k2
x + k2

y it decays exponentially.

If we consider planes sufficiently far from z = 0, only the oscillatory contribution of

the propagator will be non-zero. Thus, in this situation the domain of integration of

Eqs. (4.14) and (4.15) can be restricted to the circle k2 ≤ k2
x + k2

y. Physically, this

restriction is commonly satisfied in optical systems.

ky

kx

evanescent
waves

plane
waves

k2=k2x+k2y

Figure 4.1: Optical propagator behavior.

Using the same approach employed to describe the electric field, the magnetic field
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H(x, y, z) can be obtained as

H(x, y, z)=

+∞∫∫
−∞

Ĥ(kx, ky; 0) e
i(kxx+kyy+kzz)dkx dky. (4.15)

4.1.1 Far field regime

Let us consider now a general problem in which the electric field distribution is known at

z = 0 and we wish to know the behavior of the field at a distant plane z. In this scenario,

the electric field has initially the form

E(x, y, z) =

∫∫
k2x+k2y≤k2

Ê(kx, ky; 0) e
i(kxx+kyy+kzz) dkx dky, (4.16)

where the domain of integration has already been restricted to the circle k2
x + k2

y ≤ k2.

Let r be the point where we want the field to be calculated. We define the unit vector ŝ

that gives the direction of r as

ŝ = (sx, sy, sz) =
(x
r
,
y

r
,
z

r

)
, (4.17)

where r =
√

x2 + y2 + z2. For calculating the distant field, denoted by E∞, the limit

r → ∞ must be taken in Eq. (4.16); besides, (x, y, z) are written in terms of (sx, sy, sz),

using Eq. (4.17). This yields

E∞(sx, sy) = lim
kr→∞

∫∫
k2x+k2y≤k2

Ê(kx, ky; 0) e
ikr

(
kx
k
sx+

ky
k
sy+

kz
k
sz

)
dkx dky, (4.18)

with sz =
√

1− s2x − s2y. This integral can be solved using the stationary phase method,

resulting in [146]

E∞(sx, sy) = −2π ikszÊ(ksx, ksy; 0)
e ikr

r
. (4.19)

This result shows that the electric field in the far field regime is completely described

by the spatial spectrum Ê(kx, ky; 0) assuming kx → ksx and ky → ksy. This implies that

the unit vector ŝ satisfies the relation

ŝ =

(
kx
k
,
ky
k
,
kz
k

)
. (4.20)

In fact, only the plane wave with wavevector k = (kx, ky, kz) from the angular spectrum

at z = 0 contributes to the far field in a point located in the direction ŝ. The contribution
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from all other plane waves is carefully cancelled out by destructive interference. The far

field can then be effectively treated as a set of optical rays, where each ray is associated

to only one specific plane wave from the initial angular spectrum – i.e., the familiar

geometrical optics regime is obtained. Using Eqs. (4.19) and (4.20), we can relate the

initial spatial spectrum to the far field as

Ê(kx, ky; 0) =
ir e− ikr

2πkz
E∞

(
kx
k
,
ky
k

)
. (4.21)

and, using Eq. (4.16),

E(x, y, z) =
ir e− ikr

2π

∫∫
k2x+k2y≤k2

E∞

(
kx
k
,
ky
k

)
e i(kxx+kyy+kzz)

1

kz
dkx dky. (4.22)

4.2 Focused laser beams

In this section, we describe the electromagnetic fields generated through the incidence of

a collimated laser beam on an ideal lens. The treatment is based on Refs. [145] and [148].

The characteristics of a focused laser beam are determined exclusively from the inci-

dent beam and the focusing optical element. In the following derivation, we consider the

incidence of an arbitrarily polarized and collimated gaussian beam on an ideal biconvex

lens. We assume that the source is far from the lens, so that we may use the geometrical

optics regime. In order to describe the action of the lens in this regime, two factors must

be taken into account: the so-called Abbe sine condition and the energy conservation

principle.

The Abbe sine condition corresponds to a restriction necessary for the magnification

factor of the lens to be independent of the incident angles [149]. This condition implies,

in our case, that the focused beam has spherical wavefronts of radius f equal to the focal

distance of the system, as illustrated in Fig. 4.2a. For this reason, the theoretical sphere

of radius f and centered at the focal spot of the system is known as reference sphere and

will be used in our calculations.

A complete treatment of the refractions by the lens would require the application of

the Fresnel coefficients for transmission and reflection. Experimentally, however, it is

possible to utilize lenses with efficient anti-reflection coatings, making the transmission

approximately total. This condition, together with the geometrical optics regime, allow

us to apply the energy conservation principle only at the reference sphere.
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Figure 4.2: a) Abbe sine condition for geometrical optics. The refraction of the incident
beam is effectively described at the reference sphere. b) Energy conservation in the
geometrical optics regime. The energy transported by each ray must remain constant.

The power transmitted by an arbitrary beam is given by

P = ⟨S⟩ · dA, (4.23)

where dA is the infinitesimal area element of the cross section of the beam and ⟨S⟩ is
the average value (in time) of the Poynting vector. Considering well collimated beams,

we have, approximately,

⟨S⟩ = 1

2Z
|E|2, (4.24)

with Z being the wave impedance of the medium.

As reflections on the lens surface were assumed negligible, the energy conservation

principle requires that the power as given by Eq. (4.23) remains constant after the beam

leaves the lens. Applying this condition for the refraction at the reference sphere (Fig.

4.2b), we get

|El| =
√
cos θ|Ei|, (4.25)

where θ is the angle that the propagation direction of the refracted beam makes with the

optical axis and Ei and El are the incident and refracted fields, respectively.

The optical system will transform an incoming beam with cylindrical symmetry into

a refracted beam with spherical symmetry. Therefore, it is convenient for us to introduce

spherical coordinates for the reference sphere (f, θ, ϕ), as well as the unit vectors n̂ρ, n̂θ

and n̂ϕ. The unit vectors n̂ρ and n̂ϕ refer to the cylindrical coordinate system, while n̂θ

and n̂ϕ refer to the spherical coordinate system. Besides, as different polarizations are

refracted differently, the incident electric field E i will be decomposed into the generic s

and p polarizations as

E i = E
(s)
i + E

(p)
i , (4.26)
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where E
(s)
i = [E i · n̂ϕ] n̂ϕ e E

(p)
i = [E i · n̂ρ] n̂ρ.

Figure 4.3: Coordinate systems for beam refraction at the lens.

The refraction keeps the unit vector n̂ϕ unaltered, but transforms the unit vector n̂ρ

into n̂θ, as seen in Fig. 4.3. Thus, using Eq. (4.25), the refracted electric field is given by

El = ( [E i · n̂ϕ] n̂ϕ + [E i · n̂ρ] n̂θ)
√
cos θ. (4.27)

The focal distances f of lenses in typical optical setups are of order of centimeters.

Besides, for incident fields within the optical band, the wavelengths are of order of 0.1µm.

Therefore, we have f ≫ λ, and fields at the surface of the reference sphere and at its

center (the focal spot) can be considered as an incident-field/far-field pair, so Eq. (4.22)

may be applied. For such, we consider El calculated on the surface of the reference sphere

as the far field E∞, allowing the field in the focal region to be obtained by

Ef(x, y, z) =
f e− ikf

2π i

∫∫
k2x+k2y≤k2

El

(
kx
k
,
ky
k

)
1

kz
e i(kxx+kyy+kzz) dkx dky, (4.28)

where a negative sign was added due to the far field being implicitly calculated at z → −∞
in this case, which changes sz sign. The origin of the coordinate system is conveniently

chosen to be at the focal spot.

We now only need to determine the complete form of the integrand, considering the

cylindrical and spherical symmetries present in our system. For this, we will initially write

down the components of the wavevector in spherical coordinates:

kx = k sin θ cosϕ, (4.29)

ky = k sin θ sinϕ, (4.30)

kz = k cos θ. (4.31)

The electric field in the focal region, on its turn, will be described in cylindrical
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coordinates, where the following transformations will be used

x = ρ cosφ, (4.32)

y = ρ sinφ, (4.33)

with ρ =
√

x2 + y2 and φ = tan−1 (y/x). Notice that the angle φ refers to the azimuthal

angle of the cylindrical coordinates, and corresponds to a coordinate of the electric field

in the focal region (Ef), while the angle ϕ refers to the azimuthal angle of the spherical

coordinates and is related to the wavevector of the refracted field at the reference sphere

(El).

Using Eqs. (4.29) to (4.33), we have

kxx+ kyy + kzz = k [ρ sin θ cosϕ cosφ+ ρ sin θ sinϕ sinφ+ z cos θ]

= kρ sin θ cos (ϕ−φ)+kz cos θ. (4.34)

The remaining factor of the integrand is related to the Jacobian determinant of the

transformation, ∣∣∣∣∣∣∣∣
∂kx
∂θ

∂kx
∂ϕ

∂ky
∂θ

∂ky
∂ϕ

∣∣∣∣∣∣∣∣ = k2 sin θ cos θ, (4.35)

and yields
1

kz
dkx dky = k sin θ dθ dϕ. (4.36)

Finally, in cylindrical coordinates the field in the focal region is then given by

Ef(ρ, φ, z) =
kf e− ikf

2π i

∫ θmax

0

∫ 2π

0

El(θ, ϕ) e
ikz cos θ e ikρ sin θ cos (ϕ−φ) sin θ dθ dϕ, (4.37)

where θmax denotes the maximum focusing angle of the lens. This equation is capable of

describing a tightly focused laser beam, provided that the incident beam on the lens is

well collimated and that the lens itself has a good anti-reflection coating. To obtain a

more explicit form, we would only need to choose the specific form of the incident field

E i; this would allow the description of the refracted field at the reference sphere El in

terms of the angles ϕ and θ, and will be developed in the following section.

4.2.1 Focused gaussian beam

In our applications, the incident electric field will be the fundamental mode of a linearly

polarized gaussian beam in the x direction. Such beam can be described by (see Ap-
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pendix D for more details)

Ei(x, y, z) = E0 e
−x2+y2

w2
0 e ikzn̂x, (4.38)

where w0 is the beam waist of the field on the lens and E0 is the amplitude, given by

E0 =
√

4ηP/πw2
0, (4.39)

where η =
√

µ/ϵ is the wave impedance of the medium and P is the beam power in

continuous wave (cw) regime for a monochromatic source. The curvature is taken to be

plane because the beam is collimated. The phase factor was arbitrarily set to one, and

the harmonic time dependence is implicit, according to the convention given in Eq. (4.1).

In terms of the cartesian unit vectors n̂x, n̂y and n̂z, the unit vectors n̂ρ, n̂ϕ and n̂θ

are given by

n̂ρ = cosϕ n̂x + sinϕ n̂y, (4.40)

n̂ϕ = − sinϕ n̂x + cosϕ n̂y, (4.41)

n̂θ = cos θ cosϕ n̂x + cos θ sinϕ n̂y − sin θ n̂z. (4.42)

At the reference sphere, the magnitude of the incident field (already rewritten in terms

of ϕ and θ) is then

|E i(θ, ϕ)| = E0 e
− f2 sin2 θ

w2
0 n̂x, (4.43)

with the ϕ dependence implicitly contained in the unit vector. Notice that the focal

distance f is now treated only as a parameter.

Eqs. (4.40) to (4.43) must be inserted into Eq. (4.27) for the explicit calculation of

El(θ, ϕ). Performing the dot products, the components of El(θ, ϕ) are given by:

El,x(θ, ϕ) = A1(θ)
[
sin2 ϕ+ cos2 ϕ cos θ

]
, (4.44)

El,y(θ, ϕ) = A1(θ) [− sinϕ cosϕ+ sinϕ cosϕ cos θ] , (4.45)

El,z(θ, ϕ) = A1(θ) [− cosϕ sin θ] , (4.46)

with A1(θ) = E0 e
− f2 sin2 θ

w2
0

√
cos θ. Eq. (4.37) can then be finally applied, yielding the

components of the electric field in the focal region:

Ef,x(ρ, φ, z) =

∫ θmax

0

∫ 2π

0

A2(θ) e
ikρ sin θ cos (ϕ−φ)[sin2 ϕ+ cos2 ϕ cos θ]

× e ikz cos θ sin θ dθ dϕ, (4.47)
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Ef,y(ρ, φ, z) =

∫ θmax

0

∫ 2π

0

A2(θ) e
ikρ sin θ cos (ϕ−φ)[sinϕ cosϕ cos θ − sinϕ cosϕ]

× e ikz cos θ sin θ dθ dϕ, (4.48)

Ef,z(ρ, φ, z) = −
∫ θmax

0

∫ 2π

0

A2(θ)cosϕ sin θe
ikz cos θe ikρ sin θ cos (ϕ−φ) sin θ dθdϕ, (4.49)

where A2(θ) = A1(θ)kf e− ikf/(2π i).

The integrals in ϕ can be analytically calculated using the relations [148]∫ 2π

0

cos (nϕ) e ix cos (ϕ−φ) dϕ = 2π( i)nJn(x) cos (nφ), (4.50)∫ 2π

0

sin (nϕ) e ix cos (ϕ−φ) dϕ = 2π( i)nJn(x) sin (nφ), (4.51)

where Jn(x) represents the n-th order Bessel function of the first kind.

Integrating in ϕ and grouping the terms, the components of the electric field in the

focal region become

Ef,x(ρ, φ, z)=
kf e− ikfE0

2 i
[I0(ρ, z)+I2(ρ, z)cos 2φ] , (4.52)

Ef,y(ρ, φ, z) =
kf e− ikfE0

2 i
I2(ρ, z) sin 2φ, (4.53)

Ef,z(ρ, φ, z) = −kf e− ikfE0I1(ρ, z) cosφ, (4.54)

where the integrals I0(ρ, z), I1(ρ, z) and I2(ρ, z) are given by

I0(ρ, z) =

∫ θmax

0

e
− f2 sin2 θ

w2
0

√
cos θ e ikz cos θJ0(ρk sin θ)

×(1 + cos θ) sin θ dθ, (4.55)

I1(ρ, z) =

∫ θmax

0

e
− f2 sin2 θ

w2
0

√
cos θ e ikz cos θJ1(ρk sin θ) sin

2 θ dθ, (4.56)

I2(ρ, z) =

∫ θmax

0

e
− f2 sin2 θ

w2
0

√
cos θ e ikz cos θJ2(ρk sin θ)(1− cos θ) sin θ dθ. (4.57)

We see the electric field Ef(ρ, φ, z) can be obtained at any point through, at maximum,

four one-dimensional numerical integrations. These operations are not expected to be

computationally expensive, making the ASR as described here a suitable approach to
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numerical treatments of tightly focused laser beams.

4.2.2 Gaussian beams focused on planar dielectric interfaces

For the calculation of the electromagnetic force densities, we will introduce now two

linear, isotropic, homogeneous, non-magnetic dielectric materials of real refractive indexes

n1 =
√
ϵ1r and n2 =

√
ϵ2r, where ϵ1r and ϵ2r are the relative permittivities. The interface

between them will be assumed planar and located at z = z0. The lens will be totally

immersed in medium 1, while medium 2 will be the sample medium, where the forces will

be calculated.

The origin of the coordinate system is, again, chosen to be at the focal spot that

the system would have if the space was homogeneous (i.e., no media 2 present). This

clarification is necessary because the refraction at the surface will naturally change the

focal spot if the beam is being focused on medium 2 surface. With this convention, we

can conveniently generalize our formalism to also describe defocusing beams – we only

need to shift the interface position z0 (see Fig. 4.4). If z0 ≤ 0, the beam is being focused

on medium 2 surface, and if z0 > 0 the beam is being defocused on medium 2 surface.

This allows further investigation possibilities of the electromagnetic force densities.

Ei

n1 n2

z

z0

Figure 4.4: Laser beam focused on a planar dielectric interface located at z = z0. By
shifting the z0 position, the beam can be defocused on the interface. Notice that the
refraction at the surface is not shown.

The incidence of the focused beam on the interface will, naturally, generates a reflected

beam and a transmitted beam, so that

E =

Ef + Er, z < z0,

Et, z ≥ z0,
(4.58)

where f, r and t denote the focused (incident), reflected and transmitted fields, respectively.
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The fields in Eq. (4.58) must satisfy the boundary conditions imposed by Maxwell’s

equations. Such conditions lead to the well-known Fresnel transmission and reflection

coefficients r(θ) and t(θ) for each polarization (see Appendix B for more details), yielding

E =

(1 + rs)E
(s)
f + (1 + rp)E

(p)
f , z < z0,

tsE
(s)
f + tpE

(p)
f , z ≥ z0.

(4.59)

The ASR can be extended to describe this inhomogeneous space [145, 150]. In analogy

with the former section, the electric field components are again given in terms of one-

dimensional integrals. As we will be interested in the electromagnetic forces arising on

medium 2, from now on we need only to treat the transmitted field, which is given by

Et,x(ρ, φ, z) =
k1fE0e

− ik1f

2 i
[I0t(ρ, z) + I2t(ρ, z) cos 2φ], (4.60)

Et,y(ρ, φ, z) =
k1fE0e

− ik1f

2 i
I2t(ρ, z) sin 2φ, (4.61)

Et,z(ρ, φ, z) = −k1fE0e
− ik1fI1t(ρ, z) cosφ. (4.62)

The new one-dimensional integrals are

I0t(ρ, z) =

∫ θmax

0

ei(k1 cos θ−k2 cos θt)z0e
− f2 sin2 θ

w2
0

√
cos θ (ts(θ) + tp(θ) cos θt)

× sin θeik2z cos θtJ0(ρk1 sin θ)dθ, (4.63)

I1t(ρ, z) =

∫ θmax

0

ei(k1 cos θ−k2 cos θt)z0e
− f2 sin2 θ

w2
0

√
cos θ sin θeik2z cos θttp(θ)

× sin θtJ1(ρk1 sin θ)dθ, (4.64)

I2t(ρ, z) =

∫ θmax

0

ei(k1 cos θ−k2 cos θt)z0e
− f2 sin2 θ

w2
0

√
cos θ (ts(θ)− tp(θ) cos θt)

× sin θeik2z cos θtJ2(ρk1 sin θ)dθ. (4.65)

In the above integrals, θt = sin−1((n1/n2) sin θ) is the transmitted angle at the dielec-

tric interface and k1 = n1(ω/c) and k2 = n2(ω/c) are the wavevector magnitudes in each

medium. The first term of the integrands guarantees that the phase is continuous when

changing media.

Having all the electric field components, the magnetic field can be determined through

Faraday’s law (using numerical derivatives) or applying again the ASR – i.e., using numer-
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ical integrations. The latter is chosen here due to potential increased numerical accuracy

and stability. The resulting integrals for the magnetic field are given in the same way

as for the electric field – only the transmission coefficients for the s and p polarizations

must be swapped. Besides, there is a factor
√

ϵ/µ that must be multiplied, corresponding

to the inverse of the wave impedance in the medium. The full description is given in

Appendix E.

4.3 Pulsed gaussian beam and momentum density

The ASR framework was developed in the last sections for monochromatic beams. Here,

we will show how to extend it properly for numerical calculations considering quasi-

monochromatic beams at optical frequencies.

We want to calculate the amplitude of a pulsed gaussian beam propagating in z di-

rection when its energy is known. For applications within the ASR, we only need the

amplitude E0 of the electric field incident on the lens located at z = zl, where

E = Re{E0 e
−x2+y2

w2
0 e−

(t−ξ)2

τ2 e− iωt}, (4.66)

with the term e ikzl being arbitrarily set to one, w0 = w(z = zl) is the beam width1 at

the lens and τ and ξ are parameters describing the gaussian temporal dependence of the

pulse.

The instantaneous power transferred by the beam at a cross section S is given by the

surface integral

P (t) =

∫
S

(E×H) · dA, (4.67)

where dA = ẑ dx dy. The magnetic field H has the same functional form of the electric

field E (apart from a multiplicative constant) provided k ≫ w−1
0 and ω ≫ τ−1, which are

conditions usually satisfied for gaussian beams at optical frequencies. The cross product

in the integrand is then

E×H = Re{E0 e
−x2+y2

w2
0 e−

(t−ξ)2

τ2 e− iωt}×Re{H0 e
−x2+y2

w2
0 e−

(t−ξ)2

τ2 e− iωt}

= ẑ
E2

0

η
e
−2x2+y2

w2
0 e−2

(t−ξ)2

τ2 cos2(ωt), (4.68)

where H0 = ẑ× E0/η and η is the wave impedance of the medium, given by η =
√

µ/ϵ.

1Recall the convention that w0 here is the beam waist parameter of the field, and not of the intensity.
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Returning to Eq. (4.67) and using polar coordinates (r, θ), we have

P (t) =
E2

0

2η
e−2

(t−ξ)2

τ2 [1 + cos (2ωt)]

∫ 2π

0

∫ ∞

0

e
−2r2

w2
0 r dr dθ

=
πE2

0w
2
0

4η
e−2

(t−ξ)2

τ2 [1 + cos (2ωt)] . (4.69)

Integrating the power in time, we find the (assumed known) total energy of pulse:

Q =

∫ ∞

0

P (t) dt. (4.70)

The integral containing the cosine term is null for this domain of integration, so that

Q =
πE2

0w
2
0

4η

∫ ∞

0

e−2
(t−ξ)2

τ2 dt. (4.71)

The amplitude E0 is then given is terms of Q as

E0 =

√
4ηQ

πw2
0t0

, (4.72)

where t0 is given in terms of the error function (erf):

t0 =

√
πτ

2
√
2

[
erf

(√
2ξ

τ

)
+ 1

]
. (4.73)

In fact, typical pulses have ξ ≥ 2τ , which generates t0 ≈
√

π/2τ , and consequently

E0 ≈

√
4
√
2ηQ

π3/2w2
0τ

, (4.74)

if the amplitude is calculated in air, as usual.

The time-derivative term of MA force density is the Abraham force, given by c−2(n2−
1)∂t(E×H). To calculate this term, notice that we know from Eq. (4.68) that, generally,

E×H = C(r) e−2
(t−ξ)2

τ2 [1 + cos (2kz − 2ωt)] , (4.75)

for some function C(r) related to the spatial dependence of the fields, which is given

numerically by the ASR. Notice that the z dependence has been restored, except for
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phase terms. The time derivative of E×H is then:

∂(E×H)

∂t
= C(r) e−2

(t−ξ)2

τ2

[
−4(t− ξ)

τ 2
[1 + cos (2kz − 2ωt)] + 2ω sin (2kz − 2ωt)

]
.

(4.76)

The sine term dominates over the remaining ones, due to the large values of ω at optical

regime; however, we know that oscillations at optical time scale can only be measured as

cycle-averages – thus, the cosine and sine terms can be neglected here as they average to

zero, and we obtain
∂(E×H)

∂t
= −4C(r)

(t− ξ)

τ 2
e−2

(t−ξ)2

τ2 . (4.77)

As already stated, by using the ASR implementation we are able to directly determine

only the stationary force densities. According to the analysis just presented, we can

generalize the ASR and add the time dependence for the force densities as2

f(r, t) = fASR(r) e
−2

(t−ξ)2

τ2 + 4
n2 − 1

c2
Re [E(r)×H∗(r)]ASR

(t− ξ)

τ 2
e−2

(t−ξ)2

τ2 . (4.78)

Here, the subscript “ASR” means the term is calculated using the standard ASR fields,

which depend only on spatial coordinates. The cycle-average argument for optical time

scales has been used again for the time dependence of the first term. The function C(r)

from Eq. (4.77) is implicitly contained in the ASR fields.

In realistic experiments, the time modulation is often not exactly gaussian; thus, it is

convenient for the numerical implementations to describe Eq. (4.78) explicitly in terms of

Q, τ and ξ. This allows a more accurate fit to the experimental temporal profile, where

we can use, for example, the sum of two different gaussian functions. Recalling that the

amplitude of a monochromatic gaussian beam with unitary power is given by
√

4η/πw2
0,

we can rewrite Eq. (4.78) as

f(r, t) =
Q

t0
fASR,m(r)h(t)−

Q

t0

(
n2 − 1

c2

)
Re [E(r)×H∗(r)]ASR,m h′(t). (4.79)

Here, h(t) is the gaussian-like time modulation of the beam, fitted from the experimental

laser source, and the subscript “ASR,m” means the fields are calculated in the ASR with

the monochromatic amplitude of unitary power.

Lastly, notice that if the pulsed beam is very short, the frequency bandwidth will be

large – so, one ASR simulation must be carried out for each discrete frequency component.

This happens because the ASR integrals depend on the wavenumber k, even for non-

dispersive media. For example, for a typical beam with τ = 10 ns and λ = 532.0 nm,

2The product of E with H∗ (instead of H) eliminates the oscillatory part, automatically yielding the
correct form.
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we can safely consider the beam monochromatic in frequency space3,4 (or, more formally,

quasi-monochromatic), because ω−1 ≪ τ . In this case, a single ASR simulation should be

enough to completely describe the pulsed beam, according to Eq. (4.79).

4.4 Force densities

As we have seen, the electromagnetic force density is quadratic in the fields and involves a

linear combination of first-order time and spatial derivatives. Specifically, the introduction

of the time dependence within the ASR framework was described in the last section; now,

we present a way to numerically calculate any of the relevant spatial derivatives using,

again, a combination of one-dimensional integrals. This is done by simply differentiating

the transmitted field equations from Section. 4.2.2 with respect to the spatial coordinates.

This approach is computationally faster, more accurate and more stable than the standard

numerical derivative calculation.

With the auxiliary functions

C1 ≡
k1fE0 e

− ik1f

2 i
(4.80)

and

C2(θ, z) ≡ e i(k1 cos θ−k2 cos θt)z0 e
−f2 sin2 θ

w2
0

√
cos θ e ik2z cos θt , (4.81)

the electric field derivatives for polarization x needed to describe the force densities within

the dielectric material are given by

∂Et,x

∂x
= C1k1

[
− cosφI

(x)
0t (ρ, z) +

cosφ

2
cos 2φI

(x)
2t (ρ, z)

+
2 sinφ

k1ρ
sin 2φI2t(ρ, z)

]
, (4.82)

∂Et,x

∂y
= C1k1

[
− sinφI

(y)
0t (ρ, z) +

sinφ

2
cos 2φI

(y)
2t (ρ, z)

− 2 cosφ

k1ρ
sin 2φI2t(ρ, z)

]
, (4.83)

3The formal quantitative analysis must, of course, be carried in frequency domain.
4Notice that relatively short pulses can break the gaussian approximation in time, i.e., the magnetic

and electric fields would not have the same time-dependence, making the analysis much more difficult.
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∂Et,x

∂z
= ik2C1

[
I
(z)
0t (ρ, z) + cos 2φI

(z)
2t (ρ, z)

]
, (4.84)

∂Et,y

∂x
= C1

[
k1 cosφ

2
sin 2φI

(x)
2t (ρ, z)− 2 sinφ

ρ
cos 2φI2t(ρ, z)

]
, (4.85)

∂Et,y

∂y
= C1

[
k1 sinφ

2
sin 2φI

(y)
2t (ρ, z) +

2 cosφ

ρ
cos 2φI2t(ρ, z)

]
, (4.86)

∂Et,y

∂z
= ik2C1 sin 2φI

(z)
2t (ρ, z), (4.87)

∂Et,z

∂x
= −2 iC1

[
k1 cosφ

2
cosφI

(x)
1t (ρ, z) +

sinφ

ρ
sinφI1t(ρ, z)

]
, (4.88)

∂Et,z

∂y
= −2 iC1

[
k1 sinφ

2
cosφI

(y)
1t (ρ, z)−

cosφ

ρ
sinφI1t(ρ, z)

]
, (4.89)

∂Et,z

∂z
= 2k2C1 cosφI

(z)
1t (ρ, z). (4.90)

The new one-dimensional integrals appearing are given by

I
(x)
0t (ρ, z) =

∫ θmax

0

C2(θ, z) sin
2 θ(ts(θ) + tp(θ)× cos θt)J1(ρk1 sin θ) dθ, (4.91)

I
(y)
0t (ρ, z) = I

(x)
0t (ρ, z), (4.92)

I
(x)
1t (ρ, z) =

∫ θmax

0

C2(θ, z) sin
2 θ sin θt tp(θ)(J0(ρk1 sin θ)−J2(ρk1 sin θ)) dθ, (4.93)

I
(y)
1t (ρ, z) = I

(x)
1t (ρ, z), (4.94)

I
(x)
2t (ρ, z) =

∫ θmax

0

C2(θ, z) sin
2 θ(ts(θ)− tp(θ) cos θt)

×(J1(ρk1 sin θ)−J3(ρk1 sin θ)) dθ, (4.95)
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I
(y)
2t (ρ, z) = I

(x)
2t (ρ, z), (4.96)

I
(z)
0t (ρ, z) =

∫ θmax

0

C2(θ, z) cos θt sin θ(ts(θ) + tp(θ) cos θt)J0(ρk1 sin θ) dθ, (4.97)

I
(z)
1t (ρ, z) =

∫ θmax

0

C2(θ, z) cos θt sin θ sin θt tp(θ)J1(ρk1 sin θ) dθ, (4.98)

I
(z)
2t (ρ, z) =

∫ θmax

0

C2(θ, z) cos θt sin θ(ts(θ)− tp(θ) cos θt)J2(ρk1 sin θ) dθ. (4.99)

In deriving these integrals, the properties J ′
n(x)=1/2 [Jn−1(x)−Jn+1(x)] and J−n(x) =

(−1)nJn(x) of Bessel functions were used. Also, we recall that the transmitted angle is

θt = sin−1 ((n1/n2) sin θ). The derivatives for the magnetic field components are given in

the same manner, and are not shown here for brevity.

Notice that there is an apparent divergence at the origin for some terms due to ρ

appearing in the denominator. It can be shown that this factor is actually cancelled by

the Bessel functions present in the integrals, so no divergence occurs, as expected. Still,

care should be taken with this point when performing numerical simulations.

For clarity, we show as an example the form of the x component of the time-averaged

force density inside a non-magnetic material according to our numerical description for a

monochromatic beam excitation. From Eq. (3.54), this term is analytically given as ⟨fx⟩ =
(1/2)⟨∂x(P · E)⟩, which results in ⟨fx⟩ = (ε0(n

2 − 1)/4)Re[∂x(E · E∗)], or, equivalently,

⟨fx⟩ = (ε0(n
2 − 1)/2)Re[E · ∂xE∗]. The force density can then be numerically obtained

from the real part of the following equation:

⟨fx⟩ =
ε0(n

2 − 1)

2

[
Ex,t

∂E∗
x,t

∂x
+ Ey,t

∂E∗
y,t

∂x
+ Ez,t

∂E∗
z,t

∂x

]
, (4.100)

where each field term inside the brackets is given through ASR equations – specifically,

Eqs. (4.60) to (4.62), (4.82), (4.85) and (4.88) and their related one-dimensional integrals,

Eqs. (4.63) to (4.65), (4.91), (4.93) and (4.95).

4.5 Simulations

The numerical simulations were performed considering air, with n1 = 1.0003, and water,

with n2 = 1.33, as the dielectrics. The gaussian laser beam has wavelength in air λ = 532.0

nm and beam waist at the lens w0 = 0.39 mm. The biconvex lens has a focal distance



4.5 Simulations 65

f = 5.0 cm and maximum focusing angle θmax ≈ 14.7◦. The water domain is chosen to be

a column with L = 10.0 mm height in z, and the interface air-water is placed at z0 = −5.0
mm. The values chosen for the parameters f , w0, θmax and L are all realistic in available

experiments, as well as the beam power (for continuous excitation) and beam energy (for

pulsed excitation) in the next two sections. The geometry of the problem is illustrated in

Fig. (4.5).

Ei

n1 = 1.0003 n2 = 1.33

z

f=5.0 cm

5.0 mm

L=10.0 mm

Figure 4.5: Geometry of the simulated problem (not to scale).

4.5.1 Continuous excitation

For the continuous monochromatic beam excitation, we choose a power of 1.0 W – which

corresponds to an approximate amplitude E0 ≈ 5.6 · 104 V/m. Figs. (4.6a) to (4.6f) show

the beam intensity at planes z = −5.0,−3.0,−1.0, 1.0, 3.0, 5.0 mm respectively. We can

see that even after the focusing by the lens and transmission through the dielectric inter-

face, the beam retains its gaussian intensity profile. Typically, non-gaussian corrections

are three orders of magnitude smaller. This allows us to maintain the definition of beam

waist inside the dielectric, which is shown in Fig. (4.7) as function of z. We can see its

value decreases linearly until a focal spot is reached approximately at z = −2.0 mm.

Then, the beam starts to linearly diverge, as expected.

The MA time-averaged radial force densities ⟨fr⟩ are seen in Fig. (4.8) for the same

selected cross sections. The electrostriction effect is clearly manifested, generating radial

forces which always point towards the center of the beam. The longitudinal component

⟨fz⟩, on the other hand, is positive before the focal spot, and negative after it – it is,

however, two orders of magnitude smaller than the radial force, as seen in Fig. (4.9). This

is in accordance with electrostriction effects being typically observed only in the direction

transversal to the electromagnetic wave propagation. Arrows qualitatively indicating the
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a b

c d

e f

Figure 4.6: Beam intensity at planes z = −5.0, −3.0, −1.0, 1.0, 3.0, 5.0 mm, respec-
tively, from (a) to (f).

Figure 4.7: Beam waist as a function of distance propagated of the approximate gaussian
beam focused inside the dielectric material.

radial force direction are also included. At last, the radiation pressure at the air-water

interface is illustrated in Fig. (4.10). The pressure presents a gaussian profile and is

strictly negative. In the coordinate system adopted, this corresponds to a force pointing

towards the air region – which should generate a bulge in the water surface, as observed
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in the vast majority of experiments.

a b

c d

e f

Figure 4.8: Time-averaged radial electromagnetic force densities ⟨fr⟩ at planes z =
−5.0,−3.0,−1.0, 1.0, 3.0, 5.0 mm, respectively, from (a) to (f).
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a b

c d

e f

Figure 4.9: Time-averaged longitudinal electromagnetic force densities ⟨fz⟩ (contour plot)
and radial force direction (arrows) at planes z = −5.0, −3.0, −1.0, 1.0, 3.0, 5.0 mm,
respectively, from (a) to (f).

Figure 4.10: Time-averaged radiation pressure ⟨Prad⟩ at the air-water interface.

4.5.2 Pulsed excitation

For the pulsed beam excitation, we use a gaussian time-modulation as illustrated in

Fig. (4.11), defined by τ = 4.5 ns and ξ = 15.0 ns. The beam energy is Q = 1.0 mJ,
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which generates E0 ≈ 2.4 · 107 V/m. The spatial profile is the same as the continuous

case – however, notice the field amplitude is approximately 420 times bigger, according

to Eq. (4.72). Higher beam amplitudes are characteristic of short pulsed beams, and

therefore can provide bigger force densities. In fact, the peak instantaneous intensity for

pulsed beam would be 4202 ≈ 1.8·105 times bigger than the continuous wave intensity. As

the force density scales linearly with beam intensity, the instantaneous force components

fr and fz for the pulsed excitation would then be multiplied by this factor. Apart from

this numerical factor and the gaussian modulation time dependence, their behavior would

be exactly the same as the continuous excitation case, and therefore are not shown here.

a b

Figure 4.11: Normalized gaussian time modulation for pulsed excitation (a) and its time
derivative (b). The parameters are τ = 4.5 ns and ξ = 15.0 ns.

The new force density term in the pulsed case is the Abraham force. This term

has maximum magnitude at times t = ξ ± τ/2, and the positive maximum is shown in

Fig. (4.12) at z = 1.0 mm. We can see it has a gaussian behavior, as expected, but is 4

orders of magnitude smaller, at peak value in time, than the radial force fr at the same

instant. This fact makes its detection extremely difficult to perform. Note that managing

to measure this term isolated from other contributions is theoretically very important,

for it is directly related to the momentum of the mass-polariton and its associated mass-

density wave inside dielectrics. Recall that the few clear measurements of the Abraham

force discussed in Section 3.3 are generally related to the total force in macroscopic bodies,

and thus can not be associated to the mass-density wave.

a b

Figure 4.12: Abraham force at its peak value (a) and the radial force density fr at the
same time and location (b).
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4.5.3 Fluid dynamics with electromagnetic forces

The presented numerical force densities can be used in fluid simulations to study the effects

induced on the materials by the laser beams. However, the dynamics of fluids is long

known to be one of the most complex topics in Physics. Even in Computational Physics,

accurate simulations of fluid dynamics are usually very hard to be performed. In this

context, we used in Ref. [129] our numerical MA force densities along with the commercial

software Comsol Multiphysics (COMSOL Inc, Burlington, MA, USA). The forces were

added as sources in a previously built Comsol script that solved the coupled thermal and

fluid dynamics equations with the proper boundary conditions. The simulation was then

compared to experimental results obtained with a photo-induced lens technique and were

able to describe the observations with excellent agreement. Indeed, this work is the first

to report measurements of the optical electrostriction as the dominant effect.
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Conclusions

As we have extensively discussed, there are basically two main problems related to the

long-standing Abraham-Minkowski controversy from the theoretical side: first, the use

of incorrect microscopic sources when dealing with local force densities and, second, the

necessity to recognize the bound state of field and matter (the mass-polariton) arising

from the coupling of the propagating field and the driven moving atoms. Although many

works have been published recently addressing the latter, there are no works that contem-

plate both aspects simultaneously. In this scenario, for the first point we presented a new

equation for the electromagnetic force densities inside linear, isotropic, non-dispersive and

lossless dielectric material. This result is derived from the widely known dipolar approxi-

mation for electromagnetic sources and is capable of correctly describing the vast majority

of experiments reported to date. The associated radiation pressure at oblique incidence

for p polarized beams was shown to be different from the expression currently adopted in

the literature. Initially, this result seems compatible with the reported experiments, but

more detailed investigations are necessary. For the second point, we have proposed an

alteration to the mass-polariton stress-energy tensor, where the Abraham stress-energy

tensor is substituted by MA’s stress-energy tensor. This allows the theory to describe

electro- and magnetostriction effects as well, while maintaining its main characteristics.

Theoretically, the momentum transfer of electromagnetic waves inside dielectrics can be

consistently explained by this new enhanced formulation, providing a very promising can-

didate to settle the Abraham-Minkowski controversy.

From the experimental side, it is known that the electromagnetic forces are typically

very small, being often suppressed by the existence of bigger effects, like absorption. Be-

sides, measurements at optical frequencies can not provide the time dependence of the

forces due to their extremely high frequency oscillations. This scenario leads to very

few experimental works being actually capable of distinguishing between the different

proposed momenta, as discussed in Ref. [69]. The eventual complete experimental confir-

71
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mation of our new formulation still requires the measurement of the transferred mass δm

and mass-polariton momentum pMP, as discussed in Section 2.3.6.

Another important aspect addressed in this work is the hidden momentum contribu-

tion, which is also directly related to the Abraham-Minkowski controversy and has also

been itself subject to misunderstandings. It appears naturally from a relativistic deriva-

tion of the equations of motion of ideal dipoles, as seen in the laboratory frame, when

their center of mass-energy is properly described as a dynamical variable. This derivation

was not presented here, but can concisely be found in Ref. [82]. As we have pointed out,

the presence of hidden momentum should be recognized as essential even in elementary

electromagnetic theory nowadays, as it keeps the smooth behavior of the electromagnetic

energy flux across magnetic interfaces.

The numerical calculations of the electromagnetic forces generated in dielectric media

by the incidence of tightly focused laser beams were also covered in this work. Notice that

employing the usual finite-difference methods to solve Maxwell’s equations under optical

regime is typically unfeasible due to the relatively very small discretization needed; thus,

following the literature on the Angular Spectrum Representation, we were able to write

these forces in a semi-analytical form for both pulsed and continuous excitations, which

is expected to provide faster and more stable numerical calculations. Such forces can be

used to help designing new experimental investigations. Besides, they were obtained for

the Microscopic Ampère formulation and successfully used in the simulations of Ref. [129].

The present work is by no means exhaustive – there are many possibilities that can

be explored starting from it. One can, for example, try to extend the theory to more

complex materials, where effects such as dispersion, absorption, anisotropy and nonlin-

earities can take place. Consideration of non-conservative optical forces can also be of

interest [151]. The analysis of angular momentum distributions inside materials is also

relevant, especially because light can have both spin and orbital angular momentum [152]

– this has been simulated, for example, using the MP formulation and considering circular

and linear polarizations in Ref. [96]. Additionally, one can search for a physically more

fundamental formalism by fully working in the Quantum Mechanics regime. There are

already some theoretical works in this regard, contemplating, for example, QED correc-

tions to the Abraham force [153] and Casimir-like effects [154].
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93. Einstein, A. & Laub, J. Über die im elektromagnetischen Felde auf ruhende Körper
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APPENDIX A

Covariant electrodynamics in flat

space-time

For an inertial system at rest with arbitrary electromagnetic sources ρ and J, Maxwell’s

equations are given by

ε0∇ · E = ρ, (A.1)

∇ ·B = 0, (A.2)

1

µ0

∇×B− ε0
∂E

∂t
= J, (A.3)

∇× E+
∂B

∂t
= 0. (A.4)

For a flat space-time, these equations can be compactly written in covariant form

as [138]

∂νF
µν = µ0J

µ, (A.5)

ϵµνλσ∂νFλσ = 0, (A.6)

where F µν is the electromagnetic field tensor, given by F µν = ∂µAν − ∂νAµ, ∂ν = ∂/∂xν

is the covariant derivative, Aµ = (φ/c,A) is the electromagnetic four-potential, ϵµνλσ is

the total anti-symmetric tensor and Jµ = (cρ,J) is the four-current.

For macroscopic bodies, it is possible to apply the conventional Ampère formulation, as

discussed in Section 2.3.3. The macroscopic Maxwell’s equations used in this formulation

can also be written in covariant form. To see that, notice that the bound four-current is

given by Jµ
b = (cρb,Jb) = (−c∇ · P,∇ ×M + ∂tP), which can be conveniently packed

into a continuity equation as

∂νM
µν = Jµ

b , (A.7)
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where Mµν is an anti-symmetric tensor known as magnetization-polarization tensor and

given by

Mµν =


0 −cPx −cPy −cPz

cPx 0 Mz −My

cPy −Mz 0 Mx

cPz My −Mx 0

 . (A.8)

With this new tensor, we can also write D = ϵ0E + P and H = B/µ0 −M in tensor

form through Dµν = F µν/µ0 −Mµν . Maxwell’s macroscopic equations are then given in

covariant form as

∂νD
µν = Jµ, (A.9)

ϵµνλσ∂νFλσ = 0, (A.10)

where Jµ now contains both free and bound four-current sources, i.e., Jµ = Jµ
f + Jµ

b .

Electromagnetic force

The covariant Lagrangian for a particle with electric charge q and mass m in flat space-

time is given by [138]

L = −mc
√
−ηµνUµUν + qAµU

µ, (A.11)

where ηµν is the flat space-time metric tensor and Uν is the four-velocity. The covariant

Euler-Lagrange equation is
d

dτ

∂L

∂Uµ
=

∂L

∂xµ
, (A.12)

where τ is the proper time. Inserting the Lagrangian from Eq. (A.11), we obtain the

equations of motion as

m
dUµ

dτ
+ q

dAµ

dτ
= qUα∂Aα

∂xµ
. (A.13)

Using the chain rule, we can rewrite

dAµ

dτ
=

∂Aµ

∂xν

dxν

dτ
= Uν ∂Aµ

∂xν
. (A.14)

Combining the last two equations, we have

m
dUµ

dτ
= q

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
Uν = qFµνU

ν . (A.15)

This is the covariant equation of motion for a point charge. The right hand side of this
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equation is recognized as the Lorentz force in covariant form. The related stress-energy

tensor for flat space-time is [72, 138]

T µν = − 1

µ0

(
ηαλF

µαF λν +
1

4
ηµνFαβF

αβ

)
, (A.16)

which is known as Maxwell’s stress-energy tensor.



APPENDIX B

Fresnel equations

Applying the boundary conditions from Maxwell’s equations to a planar interface between

two linear, homogeneous, isotropic, non-magnetic dielectrics, and considering an inciding

wave which is locally plane, we are able to obtain the fractions of the fields that are

transmitted and reflected in terms of the media parameters. In our case, no free charges

or currents are assumed to exist at the interface, and the beam is assumed to propagate

from medium 1 to medium 2. In terms of the incidence angle θ, the Fresnel coefficients

are given by:

rs(θ) =
n1 cos θ −

√
n2
2 − n2

1 sin
2 θ

n1 cos θ +
√
n2
2 − n2

1 sin
2 θ

, (B.1)

ts(θ) =
2n1 cos θ

n1 cos θ +
√

n2
2 − n2

1 sin
2 θ

, (B.2)

rp(θ) =
n2
2 cos θ − n1

√
n2
2 − n2

1 sin
2 θ

n2
2 cos θ + n1

√
n2
2 − n2

1 sin
2 θ

, (B.3)

tp(θ) =
2n2

2 cos θ

n2
2 cos θ + n1

√
n2
2 − n2

1 sin
2 θ

n1

n2

, (B.4)

where n1 =
√
ϵ1r and n2 =

√
ϵ2r are the dielectric refractive indexes, rs and rp are

the reflection coefficients for s and p polarizations and ts and tp are the transmission

coefficients of the s and p polarizations. The derivation of these equations can be found

in most electromagnetic theory textbooks, and we mention Ref. [120] as a good example.
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Radiation pressure at oblique incidence

The radiation pressure for oblique incidence in non-magnetic dielectrics is given in liter-

ature by Eq. (3.62). This equation is equivalent to [133]

Prad = − I

2c

n2
2 − n2

1

n2

cos θi
cos θt

[
(sin2 θi + cos2 θt)Tp cos

2 α + Ts sin
2 α
]
, (C.1)

where α is the angle between the electric field and the plane of incidence. Thus, for α = 0

we have a p polarized beam, while for α = π/2 we have a s polarized beam. In the former

case, we have then

P(p)
rad = − I

2c

n2
2 − n2

1

n2

cos θi
cos θt

[
(sin2 θi + cos2 θt)Tp

]
. (C.2)

We can rewrite this equation by using the relation T = (n2 cos θt/n1 cos θi)|t2|, which
is valid for both polarizations [155], obtaining

P(p)
rad = −n1I

2c

n2
2 − n2

1

n1

[
(sin2 θi + cos2 θt)t

2
p

]
. (C.3)

Recalling that the (instantaneous) intensity for a plane wave is I = ε0cnE
2
0 we have then

P(p)
rad = −(ε2 − ε1)

2
E2

0

[
(sin2 θi + cos2 θt)t

2
p

]
. (C.4)

This last equation is significantly different from our equation for the radiation pressure for

p polarization, Eq. (3.60), even though they both originate from the Abraham-Minkowski

force density. Even if we neglect the transmitted part of the normal component in our

expression and further apply the relation t2p = (n2
1/n

2
2)(1+rp)

2, the two different forms can

not be reconciled. Therefore, we expect that Eq. (3.60) is the correct one for p polarized

beams. For s polarization, Eqs. (C.1) and (3.62) remain correct.
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The paraxial approximation of

electromagnetic fields

In many analyses of laser beams propagation it is very common the majority of the beam’s

energy is transported along the longitudinal direction of propagation. In this situation,

the longitudinal component of the wavevector k of the ASR can be approximated by

kz = k
√

1− (k2
x + k2

y)/k
2 ≈ k −

k2
x + k2

y

2k
. (D.1)

This approximation is known as paraxial approximation and is frequently used for

analytical treatments of weakly focused laser beams. In particular, we will consider as

example the fundamental mode of a linearly polarized laser beam with a gaussian distri-

bution at the beam waist, namely

E(x, y, z = 0) = E0 e
−x2+y2

w2
0 , (D.2)

where E0 is constant through the transverse plane xy and w0 is the beam waist, located

at z = 0. The spatial Fourier spectrum of this beam is given by

Ê(kx, ky; 0) =
1

4π2

+∞∫∫
−∞

E0 e
−x2+y2

w2
0 e i(kxx+kyy) dx dy

= E0
w2

0

4π
e−(k2x+k2y)w

2
0/4. (D.3)

This expression is then inserted on the ASR, Eq. (4.14), with kz given by the paraxial
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approximation, Eq. (D.1), yielding

E(x, y, z) = E0
w2

0

4π
e ikz

+∞∫∫
−∞

e
−(k2x+k2y)

(
w2
0
4
+ i z

2k

)
e i(kxx+kyy) dkx dky. (D.4)

This equation can be analytically integrated, resulting in

E(x, y, z) =
E0 e

ikz

1 + 2 iz/(kw2
0)

e
−x2+y2

w2
0

1

1+2 iz/(kw2
0) , (D.5)

which corresponds to the gaussian beam in the paraxial approximation. Defining a new

parameter z0 = kw2
0/2 (the Rayleigh range) and using the cylindrical coordinate ρ =√

x2 + y2 we get a more familiar form

E(ρ, z) = E0
w0

w(z)
e
− ρ2

w2(z) e i(kz+kρ2/2R(z)−η(z)), (D.6)

where w(z) = w0

√
1 + z2/z20 is the beam waist, R(z) = z(1+z20/z

2) is the beam curvature

radius and η(z) = tan−1(z/z0) is the phase correction.

It is important to recall that, once the paraxial approximation is introduced, the

electric field is not an exact solution of Maxwell’s equation anymore. Indeed, the smaller

the beam waist w0, the greater the error in the approximation. When w0 becomes of the

order of the wavelength in the medium – which is the case for tightly focused beams –

more terms must be added to Eq. (D.1). In this case, however, the series will converge too

slowly [145], so that some other approach, such as the Angular Spectrum Representation,

is necessary for an accurate treatment.



APPENDIX E

Magnetic field expressions for

x-polarization

Complementing Section 4.2.1, we show here the focused magnetic fields of a x polarized

fundamental gaussian beam within the ASR framework:

Ht,x(ρ, φ, z) =
k1fE0e

−ik1f

2 iZ2

I2t,h(ρ, z) sin 2φ, (E.1)

Ht,y(ρ, φ, z) =
k1fE0e

−ik1f

2 iZ2

[I0t,h(ρ, z)− I2t,h(ρ, z) cos 2φ] , (E.2)

Ht,z(ρ, φ, z) =
−k1fE0e

−ik1f

Z2

I1t,h(ρ, z) sinφ, (E.3)

where Z2 =
√

µ2/ϵ2 corresponds to the wave impedance of medium 2. The one-dimensional

integrals are given by

I0t,h(ρ, z) =

∫ θmax

0

ei(k1 cos θ−k2 cos θt)z0e
− f2 sin2 θ

w2
0

√
cos θ (tp(θ) + ts(θ) cos θt)

× sin θeik2z cos θtJ0(ρk1 sin θ)dθ, (E.4)

I1t,h(ρ, z) =

∫ θmax

0

ei(k1 cos θ−k2 cos θt)z0e
− f2 sin2 θ

w2
0

√
cos θ

× sin θeik2z cos θtts(θ) sin θtJ1(ρk1 sin θ)dθ, (E.5)
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I2t,h(ρ, z) =

∫ θmax

0

ei(k1 cos θ−k2 cos θt)z0e
− f2 sin2 θ

w2
0

√
cos θ (tp(θ)− ts(θ) cos θt)

× sin θeik2z cos θtJ2(ρk1 sin θ)dθ. (E.6)


