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Abstract

A study of pattern formation in con ned cholesteric samples by Monte Carlo simu-
lations is performed. It is carried out by approaching the local director as a headless spin,
respecting the symmetry property of nematics. The supramolecular architecture of cholesterics
Is obtained by interacting the directors via the Metropolis-Hasting algorithm to nd energeti-
cally favorable con gurations randomly drawing accessible microstates. The spins energy is
evaluated according to the Hamiltonian proposed by the Luckhurst model for cholesterics, a
pairwise additive potential including the chirality as parameter. The director pro le is studied
by taking snapshots of con gurations in the lattice and observing simulated textures, produced
by the Miller matrix method, to compare with experimental results. Different kinds of con-
gurations can appear along the volume depending on the chirality, surface anchoring, elastic
constants and external in uences. In a hybrid aligned cell, the surface anchoring energy is cru-
cial to determine the director eld. A variety of anchoring energies in the homeotropic substrate
IS set to investigate the role of surface anchoring energy in the director con guration. Simula-
tions in this con nement show spontaneous modulated pattern formation for intermediate an-
choring energies, and structural transitions could be reached by changing the anchoring energy
values. The spontaneous modulation also appears in cases of planar anchoring on both sub-
strates. By heating the cholesteric liquid crystal to the isotropic phase, and slightly decreasing
the temperature through the isotropic-nematic phase transition, the sample may experience the
wetting phenomenon at the surfaces under speci ¢ conditions. After the wetting layer reaches
a critical thickness, the striped pattern spontaneously takes place in the thin layer. Two differ-
ent situations of modulated structure are reported both with experiments and simulations: the
growing modulation and the developable-modulation. The situation of spherical environments
mimicking liquid crystal droplets are also investigated in the simulations by applying thermal
guenches. Several sets of elastic constant ratios were analyzed under homeotropic and planar
boundaries, considering weak and moderate surface anchoring energy. The thermal quench
process is reported to be an ef cient technique to reach stable and metastable states by the sim-
ulation perspectives, for whatever choice of anchoring energies.

Key-words: Monte Carlo simulations, cholesteric liquid crystals, Luckhurst pairwise additive
potential, spontaneous modulations, cholesteric droplets.



Resumo

Um estudo da formacgédo de padrées em amostras de colestéricos con nados é real-
izado por simulag6es de Monte Carlo. Tal estudo é realizado aproximando o diretor local como
um spin, respeitando as propriedades de simetria dos nematicos. A arquitetura supramolec-
ular dos colestéricos € obtida pela interagdo dos diretores via algoritmo Metropolis-Hasting
para encontrar con guragfes energeticamente favoraveis sorteando aleatoriamente microesta-
dos acessiveis. A energia entre o0s spins € calculada de acordo com a Hamiltoniana porposta
pelo modelo de Luckhurst para os colestéricos, um potencial aditivo entre pares que inclui a
quiralidade como um parametro. O per | do diretor é estudado por guras das con guragdes na
rede e observando as texturas simuladas, produzidas pelo método das matrizes de Mdller, para
comparar com resultados experimentais. Diferentes tipos de con guracfes podem aparecer ao
longo do volume, dependendo da quiralidade, ancoramento da superficie, constantes elasticas e
in uéncias externas. Em uma célula hibrida, a energia de andoramento da superficie é crucial
para determinar o campo do diretor. Varias energias de ancoragem no substrato homeotrépico
séo de nidas para investigar o papel da energia de ancoramento da superficie na con guragéao do
diretor. Simula¢des neste con namento mostram formacao espontanea de padroes modulados
para energias de ancoramento intermedidrias, e transicdes estruturais podem ocorrer alterando
os valores da energia de ancoramento. A modulacdo espontanea também aparece nos casos
de ancoramento plana em ambos os substratos. Aquecendo o cristal liquido colestérico até a
fase isotropica e diminuindo suavemente a temperatura através da transicdo de fase isotropica-
nematica, a amostra pode sofrer o fendbmeno de molhamento nas superficies sob condicfes
especi cas. ApGs a camada de molhamento atingir uma espessura critica, o padrao de listras
surge espontaneamente na camada na. Duas situagdes diferentes de modulacdo sao relatadas
com experimentos e simulagcdes: a “growing-modulation” e a “developable-modulation”. A
situacdo de con namentos esféricos que imitam gotas de cristal liquido também é investigada
nas simulacdes usando o resfriamento térmico. Varios conjuntos de razdes de constantes elas-
ticas foram analisadas em ancoramentos homeotropicos e planares, considerando energias de
superficie fraca e moderada. O processo de resfriamento térmico é relatado como uma técnica
e ciente para alcancar estados estaveis e metaestaveis pelas perspectivas da simulacéo, para
qualquer escolha de energias de ancoramento.

Palavras-chave: Simulacdes de Monte Carlo, cristais liquidos colestéricos, potencial aditivo
entre pares de Luckhurst, modulacfes espontaneas, gotas colestéricas.
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Chapter 1
Introduction

Understanding liquid crystals (LCs) director elds in complex con nation systems can
be advantageous for ef ciently applying them in several burgeoning technological applications.
Such con gurations are the ones that minimize the system's free energy density. Determining
the aforesaid supramolecular architecture can be a challenging task due to the complex math
needed to describe the system. In the past years, nding numerical solutions for self-consistent
equations within theoretical models has been a useful tool to solve such problems. In many
cases, an alternative solution could be obtained by treating molecular behavior as interacting
spins, under an effective potential, in a discretized lattice. To put it differently, the system
discretization can exchange a many interacting body system into a many independent body
system. The elastic energy density of an achiral nematic, given by the expression proposed
by Frank [L], was rstly discretized in the isotropic elastic form by Lebwohl and Lasl&yr [
and in an explicit elastic constant manner under the in uence of an external eld by Gruhn and
Hess B]. Since then, the anisotropic potential was parameterized in terms of splay, twist and
bend elastic constants by Romanrf). [ Besides nematics, cholesteric liquid crystals (CLCS)
have several industrial applications, such as supertwisted nematic displays. The anisotropic
potential extension with the inclusion of a chiral term also allows to ef ciently simulate CLCs
devices b]. However, there are many open problems concerning the use of simulation models
unable to connect the elastic constants with the interpretation of results. In addition, the lack
of simulations using models considering the temperature as the director uctuation controller
drives the interest in the studies here realized.

In Chap.2, we present the fundamental concepts of nematic and CLC phase, as well
as signi cant properties to explore molecular interactions by a pairwise potential. The Ising
model is brie y commented to introduce concepts of spins located in a discretized lattice and
interacting by a pairwise potential. Finally, we describe the extension for spins representing
nematic directors in the lattice model, their pairwise interaction being connected with splay,
twist, and bend elastic constants, and the chiral term to represent cholesteric interactions.

Behaviors such as phase transition in LCs are extensively studied by numerical mod-
els. One of them, which has been potentially used for LCs, is the Monte Carlo (MC) method.

21
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In physical science, this method consists of calculating observable properties by a probability
distribution to obtain numerical results by randomness in deterministic systdins.idea in
LCs consists of simulating thermal uctuations in the system and see how it behaves along the
changes from state to state. The main goal of this thesis is to use the MC method to study CLCs
under different con nements, which are open problems both from the LC point of view and
from the MC point of view.

Treated surfaces in contact with LCs can induce a preferred orientation in the director
eld, consequently changing the bulk organization. If the surface in uences the LC directors
to keep the perpendicular alignment, the anchoring is said to be homeotropic, while parallel
surface alignments are so-called planar anchoring. Different kinds of supramolecular helix
structure can be achieved depending on the combinations of surface alignments. Recently,
experiments have shown that CLCs under hybrid aligned con nements (planar — homeotropic)
spontaneously form a uniform striped pattern along the bbilk Yith the aim to investigate
the surface in uence on the LC organization, we studied CLCs in hybrid boundary conditions
by means of MC simulations. Experimentally, the thickness of slab to cholesteric pitch ratio
(d*po) is fundamental to describe how the stripes will behave, but no deep studies on the role
of anchoring energy have been reported to date. According to simulation results, reported in
Chap 3, itis possible to observe a textural transition that depends both on the material's physical
parameters and the anchoring strength. Such transition, from planar to a spontaneous striped
pattern structure, occurs when the anchoring energy at the homeotropic surface reaches a critical
value Jeiit. Moreover, the oscillation amplitudes of directors immediately below the top surface
changes with anchoring energy and with the physical parameters of the liquid crystal host.

CLCs feature a structural director arrangement in the form of a helix throughout the
volume. The control of this helix is often dif cult, however, under certain experimental condi-
tions it is possible to orient them with a purpose, either by applying an electric eld or changing
the anchoring conditions of the substrates, for example. Cholesterics con ned between two
substrates (typically called slab) form a system in which the symmetry is broken by surfaces.
If such surfaces are treated with materials that favor high LC ordering when in contact with
them, a type of anchoring may arise according to the their treatments. After cooling, it provides
that the cholesteric phase takes place at the surface, creating a system which has three inter-
faces, the solid-isotropic phase, the solid-cholesteric phase and the cholesteric-isotropic phase
interfaces. When the LC is cooled in the slab from the isotropic to the cholesteric phase, the
wetting phenomenon can emerge due to the preferred surface alignment, and there is no more
contact between the isotropic phase with the surface. Such phenomenon happens when the
contact angle between the cholesteric phase and the substrate tends to zero. As a consequence,
a phase separation is induced by the surface treated with planar anchoring. In this case, the
more ordered phase appears at the substrates due to the higher af nity with the surface material.

A system is considered deterministic if its development is not random and the nal properties are the same,
independent of initial conditions.
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So, after the wetting phenomenon, a phase con ned between the isotropic phase (generating a
tilted weak anchoring) in the sample volume and the substrates (strong planar anchoring) may
appear. If the temperature keeps decreasing, the ordered phase continues to get thicker, since
the isotropic phase looses space. After the thickness grows and reaches a critical value, which
may depend on the cholesteric pitch, a dynamic, rotative temperature-dependent striped pattern
appears and changes the orientation of the induced layer. Such modulated pattern takes place
due to the chiral nature of the LC, the weak and inclined anchoring at the interface (which sep-
arates the nematic and isotropic phases), and the elastic anisotropy present in the rjterial [
We report in Chap4 novel experimental and simulation results showing two different manners

of stripes emergence after wetting phenomenon when transiting the sample from isotropic to
chiral phase. They are named growing and developable modulation.

The striped pattern is not limited just to rectangular con nements, usually used for dis-
play applications, but it stretches far beyond manifesting in spherical geometries like droplets.
Unlike the cases in which the LC is con ned between rigid surfaces, the droplets generally take
spherical shape when dispersed in aqueous solution, for example. In this case, the boundaries
between the drop and the external environment form an interface offering a certain type of align-
ment. The inner structure must be governed by a subtle balance between several factors, such as
elasticity, chirality, in addition to the type of spherical interface anchoring. Due to the sensitive
for physical and chemical interactions at the interface, CLCs change the optical con guration
allowing them to work as biosensor, P]. One of most important factors in LC ordering is
the temperature, since thermal quenches can be used to achieve supramolecular architecture
remote control. There are few experiments that link thermal quenching with chirality, surface
alignment and anchoring enerdgy( 11]. Furthermore, understanding the mechanism that gov-
erns droplet relaxation to a speci ¢ stable states is still an open problem. Recently, simulations
using the Landau-de Gennes (LdG) model found stable states in planar droplets for different
cholesteric pitch values. On the other hand, stable structures were found to change according to
surface anchoring energy variations. In droplets with homeotropic alignment, only metastable
states have been observed in quenching process. In order to address this gap in the literature, we
report in Chap5 MC simulations of thermal quench process reaching stable and free-standing
metastable states by considering a pairwise additive interaction between directors in the bulk.
Also, a wealth of stable states may appear by changing the LC elastic constants in droplets with
intermediate chirality.

Brie y summarizing, we discuss in Cha@.the main properties of nematic and cho-
lesterics to analyze LCs near molecular level. In Clgapve study the results for simulations
of CLCs con ned in hybrid cells, observing the role of surface anchoring energy at the bulk. In
Chap 4, we report two different modulations in experiments and demonstrate them occurring in
simulations. Also, thermal quench simulations in CLC droplets setting several combinations of
interface anchoring, elastic constants and chirality is described in Gh&mnally, in Chap6,
we join the main observed aspects on the chiral pairwise additive potential performance in the
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studied simulations.



Chapter 2
Elementary Concepts

Phase transition and critical phenomena are common events extensively present in na-
ture. Generally, a system behavior is described by thermodynamic quantities, which bring
information such as the state of matter, including stable states. These quantities can be related
to speci c features of the physical system which depend on the range of microscopic interac-
tions [12)].

Furthermore, it can be useful to relate the macroscopic behavior to the microscopic
one. In this case, the connection can be given by the canonical partition fungjiowlich
measures the number of accessible microstates in the system, supplying a good understanding
of statistical properties describing systems in thermodynamic equilibrium. There are a few
physical systems for which it is quite simple to nd an exact solution Zor On the other
hand, if we take LCs as an example, it can be complicated to nd an analytical solution. It
happens because the degrees of freedom of a LC molecule are enormous due to the continuum
of states. Although this bias is a dif cult task, the MC method has been used to treat this
problem P, 13-15].

The MC method is a computational algorithm based on a massive random sample to
generate numerical results by means of average. There are several methods to produce MC
simulations, however for the purpose of this work, we focused only on the Metropolis-Hasting
(MH) algorithm, which is a rejection method®, 17]. As written before, the LC molecule can
assume any state in the bulk. So, the reasoning for choosing this algorithm is that the possibility
to access a speci ¢ state is evaluated according to the Boltzmann distribution. A more detailed
description of MH algorithm in the LC shall be given in the next sections.

This chapter is dedicated to present elementary concepts in which this research is based
on. In order to understand how the mechanism of simulations works, rstly we introduce the
basic properties of nematic and cholesteric liquid crystals (CLCs), followed by the mean- eld
theory and its applications in Ising model and nematic LCs. For the second part, we describe
molecular interaction and how it can be useful to understand macroscopic LC properties and
their connection with theoretical and experimental behaviors. Furthermore, interface interac-
tions, light transmission behavior and how to simulate them in a LC media are brie y discussed.

25
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2.1 Notions of Liquid Crystalline Phase

Discovered in 1888, LCs were rstly noted by F. Reinitzer during an analysis of
cholesteryl benzoate, a compound that presented an unusual phase transition with two different
melting points between the solid and the liquid phak®.[ Thereafter, O. Lehmann observed
that this intermediate phase (mesophase) of the substance showed both mechanical properties
of liquids and optical features of crystalsd.

LCs present speci ¢ behaviors which resemble crystals due to their elastic and optical
anisotropies, besides being light scatterers and, in some cases, re ective materials. Crystalline
solids have high positional order structure and the molecules are xed in a three-dimensional
array, as it can be seen in Fgj1-(a). On the contrary, in the LC mesophase, the molecules are
not completely xed and, atthe same time, they are not disordered as the gas molecules. Besides
positional order, LCs, when under speci c conditions, present orientational order because the
molecular shape is not spherical, but rather anisometric. A mesophase between solid—isotropic
liquid may arise because the organic molecules of LCs are composed of a rigid core and exible
tail [20,21]. Without these two compositions, no orientational order neither intermediate phase
would prevail. In a certain instance, the combinations of these orders may lead LCs to be clas-
si ed in at least three different phases according to G. Friedel: smectic, nematic and cholesteric
phases??). They are different phases of thermotropic LCs, since phase transitions are mainly
driven by temperature2[3].

The rst classi cation is the “smectic” phase, where the molecules are ordered side
by side pointing to an average direction, in a series of quite exible layers about one molecule
thick distant P4]. The molecules have high orientational order but partial positional one (corre-
lation between the center of mass of the molecules) in the stru@8reHig. 2.1-(b) illustrates
this phase. In general, such phase is a layered structure with well-de ned interlayer spacing,
where the interlayer attractions are weak compared with lateral interactions between molecules,
allowing the layers to be similar to a two-dimensional liqub]f Different from crystals,
that possess high positional and orientational orders, smectics have high orientational order but
partial positional one (correlation between the center of mass of the molecules) in the structure.

The second great class of LCs is so-called “nematic” phase because of the typical line
defects often observed in this mesophase, hence the name, which in Greek means thread. In
particular, the most common kind of LC molecule which is composed of a longer axis and two
other shorter perpendicular ones are named calamitics. If there is a preference for orientation
just in the longer axis, the LC is de ned as uniaxiaf[.! The uniaxial feature happens due to
thermal motion producing a high-frequency rotation around the long molecular axis. Here, the
lack of positional order in the nematic phase happens because they are found in a temperature
higher than the smectic pha&&his additional thermal agitation allows the molecules to diffuse

For both long and short axes with an orientational tendency, the LC is called biaxial.
2|t implies that nematic phase is less ordered than smectic one.
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Fig. 2.1: Molecular structures for different phases. (a) Solid crystalline — the molecules are xed within the lattice.

(b) Smectic phase — after increment in temperature, the molecules can diffuse within each layer like 2D liquid.
(c) Nematic phase — increasing even more the temperature from the smectic phase, the molecules loose positional
order but still have orientational order. (d) Cholesteric phase — the supramolecular architecture forms a helical
structure through space; the distaqcé&nown as the pitch, is de ned as the required distance in which the helix
twists 360 .

through the space, decreasing the apparent viscosity of the substance. Despite this, there is still
orientational order for the long axis. This phase is schematically represented ia. F(g).

The preferred average direction of molecules in a small region is denoted by the unit vector
@ the so-called director. Further increments of temperature lead the LCs to the isotropic state
where both positional and orientational orders are not present. At this state, the molecular long
axis can point to any direction in space with equal probability.

The third class, according to Friedel, is called chiral nematics, also known as choles-
terics, because of the similarity with compounds that contain cholesterol molecules. Chirality
is remarkable in nature because of the lack of mirror symmetry under rotations or translations,
differentiating systems in all length scales, from microscopic to macroscopic levels, biological
and chemical systems or even in astronomical sc&és3f]. CLC structure with short pitch
(or high twisting ratio) resembles smectics due to the presence of pseudolayered organization.
The difference here is that the layers where the molecules are organized rotate along the space.
The characteristic distance 860 rotation is de ned as the natural pitch of cholesten, (
shown in Fig.2.1-(d). In this case, the molecules are arranged systematically with long axes
parallel to the layer, but the exible tail points upward from the layer causing a slight displace-
ment in adjacent layer. It happens because the chiral molecules have a carbon atom with four
different bonds that are not in the same plane (although axial chirality also exists in LCs), but
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(@) (b)

Fig. 2.2: (a) lllustration of cholesterol molecule; it is represented by groups of methyl chain (in blue color) dislo-
cated out from the plane of the molecule (black bonds); the CH bonds (in red lines) are below the plane. (b) Typical
rod-like LC molecule; its structure is composed by groups which affect the features of supramolecular structure,
like the formation of nematic phase (benzene rings) with a linking group (L), the elastic deformations (group X)
and the responses to electric eld in uences (group Y).

forming a tetrahedror30, 35-37], as illustrated in Fig2.2-(a). As a result, the molecules form

a helical supramolecular architecture in a mesoscopic region. The helical arrangement is an op-
tical active structure because the electric eld vector of linear polarized light is de ected along
the helical arrangement rotating the plane of polarization of light traveling perpendicularly to
the layers® This peculiar optical characteristic of CLCs happens due to the so-called circular
dichroism, which separates light in two components, one rotating clockwise-sense and the other
counterclockwise. If a white light passes through the cholesteric material, a dispersion can oc-
cur resulting in different colors according to the combination of temperature, angle of incidence
of the light beam and the pitch size. So, a speci c color of light dispersion can be reached in
cholesteric materials by combining these parameters as desired.

Properties of nematics

A general molecular structure of a typical rod-like LC molecule is illustrated inZFiy.
(b). Itis composed of two terminal groups (X and Y), and a linking group L between the ring
systems. The rings can be both of benzenes, cyclohexanes or a combination between them.
Their presence affects the short range intermolecular force responsible to form the nematic
phase. The terminal group X, often called side chain, strongly in uences the elastic constants
of nematic phase and the phase transition temperatures. On the other hand, the group Y acts
for the most part on the dielectric anisotropy'§, which dictates the behavior of the threshold
voltage? Physically, this voltage goes with the inverse to the square root of

If there is absence of external forces, LCs behaves as a viscous media. Nevertheless,
applied torques disturb the orientation in the bulk, so the material tries to elastically restore
its preferred direction. These features cause LCs to be classi ed as viscoelastic m&iéfials [
Theories for dynamic of LCs were developed by Ericksen and Lex3ielf3]. Distortions in the
bulk provided by external in uences, like electric eld or geometric con nement for example,
makes the directa®to be position dependent, which means its derivatives are not zero. Frank
developed the curvature-elasticity theotyfor nematic LCs, proposing that the free energy in

SMaterials that rotate the light polarization plane are often called optically active.
4The threshold voltage is de ned as the minimum voltage required to reorient the LC molecules.
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Fig. 2.3: Representation of distortions in a nematic sample. (a) Splay, (b) twist and (c) bend type.

a small unit of volume can be written as
h i h [ h [
1 2 1 2 1 2

f:§K11|®® + 5K ® ® ® +SKas ® R @ ; (2.1)
where theKji's are the elastic constants afis the director. In fact, the elastic constants,
or the curvature components, dictates how much each kind of distortion (spgfay, twist
— K22 and bend K33) will contribute to the total energy. Fig.3 shows these three kinds
of distortion in a nematic media. In addition to dynamical uidity, optical and mechanical
properties, the anisotropy in LC molecules brings electric and magnetic responses, making them
easily in uenced by external electric and magnetic elds. Besides, LCs are mechanical-stress
responsive materials.

Cholesterics

Generally speaking, CLCs are nematics with chiral molecules (dopant) dissolved in the
LC media® From the mesoscopic point of view, the directors are nematics, but in the macro-
scopic level its architecture features a helical distortion along the bulk. Thepigsdnequently
de ned as the distance in which the directors rot@8@ . Arising from optical isomerism, the
sense of the pitch rotation depends on whether the dopant molecules are dextrogyres or levo-
gyres. The ef ciency of chiral dopants for inducing the twisted order in the media is related to
the dopant helical twisting power (HTP). Signi cant HTP is often found in chiral dopants with
structure similar to the hostfl]. Considering as the HTP of the chiral dopant, the magnitude
of p, the concentration of dopant)(and its facility in twisting the superstructure are connected

by
1
I
Naturally, the minimum energy state for cholesterics demands a smooth distortion in
a small region. This nite twist in the curvature-elasticity theory for cholesterics proposed by

5In some cases, chirality is intrinsic in the material, such as cholesterols, for example.
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Frank generates an energetic cost that can be writtelj as |
h i h [ h [
1 2 1 2 1 2
f= §K11 I® ® + §K22 ® @ ®+q + §K33 ® I® ® (2.3)

whereqp is the modulus of wave vector of the CLC helix. Since the helical structure is peri-
odically repeated along a certain direction, as illustrated in Eity(d), a wave vector can be
related with the pitch agp = 2 <p. The elastic theory actually depends on the sample size to
pitch ratio (Le p). Also, L can be interpreted as the characteristic scale of deformations. Choles-
terics thatadmitéep  1are considered weakly twisted (similar to nematics), whle 1

is the strongly twisted regime (forming a layered structure similar to smectigg) [

Depending on the cells microenvironment and the relatiop, the intriguing helical
pattern in cholesterics can generate different kinds of textures. In the intermediate regime of
L pandLep 1, the oily streaks edge dislocation can appear. It is a network-like defect line
where the directors are not well de ned and the lines appear as long bands dividing domains of
at layers. While the lines have a confusing orientation, the big uniform domains are composed
of a helical arrangement where the directors rotate around the eld of%wv.planar anchor-
ing at the surfaces, it suggests that the helix axis is hormal to substrates. This con guration is
known as Grandjean texture, or standing helix (SH) orientation, and it can be seen2mFig.

(a). The unclear orientation in oily streaks is due to the mismatch of helix rotation in adjacent
domains. On the other hand, boundary conditions like environment or external disturbance may
induce other kinds of frequent orientation in directors. When the helix axis lies in-plane, in
other words parallel to the substrates, the commonly designated ngerprint con guration takes
place in the bulk. This assembly is recognized as the lying helix (LH) orientation or as mod-
ulated state. It can be non-uniform, or with high-aligned stripes, as illustrated inZ-gi)

and (c).

In addition to the SH and LH equilibrium orientation, there are other common inter-
mediate states for CLCs. One of them is the focal conic (FC) alignment, in which there are
many local domains with helical axis approximately parallel to the substrates, but oriented in
different directions.In the regime dfep 1, or very small pitches, the FC texture appears
getting space through the eld of viewt§].” Fig. 2.4-(d) shows this kind of texture. Another
one is the Helfrich pattern, shown in Fg14-(e), where a 2D arrangement is formed by bending
the cholesteric layered structure.

Transitions between the states mentioned above are common if an external eld is ap-
plied on the sample. So, switches from FC to planar structure can be achieved if an electric eld
acts in the parallel direction of the substrates. The same FC state can change to homeotropic
state if the electric eld is perpendicular to the substrétéismakes CLCs of great importance

5The color in the sample depends on the pitch and on the phase retardation.

’ForLep 1the cholesteric textures are similar to nematics.

8In the homeotropic state the directors point parallelly to the normal of substrates while in the planar case, they
are parallel to the surface.
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Fig. 2.4: Common experimental structures (above) with their respective director schematic representation (below).
(a) Standing helix (SH) orientation with oily streaks forming wall defects. (b) Non-uniform and (c) uniform nger
print textures. (d) Focal conic (FC) domain and (e) the 2D Helfrich pattern where the cholesteric layers are bending
in the bulk. Note that in (b) the schematic representation shows the top view of the in-plane cholesteric helix, while
the FC illustration in (d) is from a lateral point of view, showing that the helices are not in the plane of substrates.
((b) and (e) Reproduced with permission of Zola et al. (2048).]

for technological applications such as displa4/g f8], switchable mirrors49], lasers 50] and

SO on because they are stimuli-responsive, so their helical arrangement is readily modulated by
reacting to external in uence$]-68]. One interesting property that is potentially applied in
display industries, for example, is the optical activity due to the variation of dielectric tensor
along the twisted structure.

2D and 3D helical axis control by different stimuli

Mediated by some boundary conditions, CLCs can rearrange the helix alignment per-
pendicular to the plane of observation. Changes in the helix assembly are mediated by the
energetic balance between elasticity and external in uences in the system. Recently, changes
in the helical superstructure is burgeoning through different stimuli offering to CLCs the possi-
bility to be used as smart materials. Patterns like grating eld can be obtained under the change
of con nement size, direct-current eld, temperature, and light irradiatigs T, 60,64,69-73],
for example. It is worth mentioning that the modulated pattern, or LH state, can appear for
hybrid-aligned cells§0]. The sample thickness to pitch rati® p plays an important role for
the uniform LH orientation in the bulk. Researches have demonstrated that the grating eld pat-
tern rotates in relation to the rubbing direction by comparing cells lled with CLCs assuming
different values ofle p [60], as shown in Fig2.5-(a)’ Besides that, the easiest form to obtain
the uniform LH (ULH) is by applying electric eld in the sampl&4]. The uniform LH is
rotative-responsive when electric eld is applied in a cell with modulated patfefihe angle
between the stripes and the rubbing direction on the surfaces changes if the voltage increases
for a xed depratio [60], as shown in Fig2.5(b).

Other manner to change the angle of grating eld involves temperaiireBy de-

9The rubbing direction is the preferred orientation in the substrate with planar anchoring.
10The electric eld is usually applied from one surface to the other due to the glass treatment with ITO.
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(@) (b)

Fig. 2.5: Cholesteric textures showing a controllable grating pattern in slabs (a) with difigrpmtios; (a).i —
dep = 15, (b) (a).ii—dep = 2:2, (8).ili —dep = 2.5, (a).iv—dep = 2:7, (a).v —dep = 3:0and (a).vi —dep = 4:0.
(b) The direction of helix alignment rotates as the electric eld strength changes in a sampledvpere2:4.
(Lin et al. (2012) p0]. Reproduced with permission of The Optical Society.)

€Y (b)

Fig. 2.6: (a) Striped pattern controlled by temperature reductions. (Zola et al. (20L3Fr¢produced with per-
mission of American Physical Society.) (b) Cholesteric nanomachines controlled by photochemical isomerization;
(b).i molecular motor structure, (b).ii-iii striped pattern and its rotation under UV illumination and (b).iv the sur-
face microscopy image of the CLC. (Eelkema et al. (20@6).[Reproduced with permission of Nature Publishing
Group.)

creasing the temperature of a LC in the isotropic to the CLC phase, a wetting transition occurs
if the surfaces are coated with a material which favors the planar ordination. Consequently, a
thin layer with sizeh of chiral nematic assembly appears at each surfaces, growing while tem-
perature decreases. Afterp reaches a critical value the grating eld takes place instead of SH
orientation. This pattern rotates due to the increasing of layer thickn&skowed by further
sample cooling. Fig2.6-(a) shows its behavior.

Another different con guration for the system, where the LC doped with a uorene-
derived molecular motor is trapped between a planar coated surface and the air, shows the
ability for CLCs working as nanomachines driven by thermal and also by photochemical iso-
merization p7].1! Items thousand times larger than the molecular motor can turn due to this

An isomerization process typically happens when a compound is switched to an isomeric form (same atoms
with different structure).
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(@) (b)

Fig. 2.7: Reversible process of 3D helical axis control switching under UV and visible light illumination. (a)
Schematic illustration of the changing in the helix behavior after shining visible light. (b) Experimental results
showing the rotation and the helix unwinding in the bulk, inverting its handedness. (Zheng et al. @416) [
Reproduced with permission of Nature Publishing Group.)

induced helix rotation (Fig2.6-(b)). Indeed, the impressive rotational reorganization is intenser

for electromagnetic irradiation than for thermal effect. The control over the helical behavior is

a challenging task, and the previous commented stimuli are 2D effects, where the grating eld
dynamically rotates in the plane parallel to the surfaces. A reversible dynamic, remote and 3D
manipulation of the helical axis of CLCs has been demonstrated using only light stimulus in the
LC E7 doped with a synthesized dithienylcyclopentene-based do@dntHig. 2.7 shows this
dynamical phenomenon. The UV illumination turns the ring-open structure into a ring-closed
one changing the chiral dopant conformation, leading to a handedness inversion. Under visible
light irradiation the reversible process occlitsWhen the CLC is lled in a planar cell the

SH state appears due to the surface anchoring, then after some seconds of UV illumination,
the structure switches for the unwound nematic phase, and then after further seconds the SH
arrangement with opposite handedness takes place. The photostationary state is reached around
a minute later with the uniform LH orientation. A complete continuous handedness inversion
process is illustrated in Fig2.7-(b), where the left-handed striped pattern becomes a right-
handed LH state achieved by visible light illumination. This effect is exclusively obtained by
light, but a coupling of light and electric external eld has been recently studidd$howing a
controllable dynamic zigzag pattern, making CLCs candidates for optical elements in photonic
circuits.

12The handedness inversion in the helix is due to the changing in the chiral dopant HTP.
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Defects in nematics and cholesterics

Defects in LCs are recognized as the regions where the director eld suffers abruptly
changesZ3,76]. The theories about disclinations, manifested as points or lines, are done to de-
scribe the director orientation around points of topological singularities. The defects are often
characterized by having an associated streggtfhich de nes the director rotation angle along
a closed path around the unde ned orientatidf][ Half-integer strengtts nematic disclina-
tions are featured by adirector rotation around a ctitious closed loop, while integer-strength
defects makes @ rotation. The value of strength is obtained by considering the common
one-constant approach for the Frank free energy in EQ),(although it can be a complicate
dependence on the elastic constafid.[ Fig. 2.8-(a) shows some common nematic disclina-
tions of positive and negative strength. Similarly, the cholesterics also present discontinuity in

(@)

(b)

Fig. 2.8: (a) Nematic defects with positive and negative, half and integer strength. The strength has positive signal
if the directors rotate in the same sense as the closed loop taken around the defect, otherwise, opposite rotation
senses make the strength negative. The strength has half-integer or integer value if the total rotation angle of
directors is , or 2 , respectively. (b) Common cholesteric disclination lines with positive and negative winding
numbers. Note that the defect line is perpendicular to the plane of cholesteric layers.
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the director eld in large scales. For describing the irregularities in cholesterics, it is conven-
tional to adopt three mutually perpendicular directé¥spand @ The lines have no core due

to their continuous director eld, while the and disclinations have the core (black points

in Fig. 2.8) representing unde ned director organization. The ve&&s along the director
direction® ®is pointed towards the helix direction, and they are relate®by® ®@[45,78).

In this case, if two out of three directors make aotation around the disclination core, the
defect is classi ed as half-integer strength defect, andotation determines integer-strength
disclinations. The ° defects are considered to be continuous since they are coreless discli-
nations (there are not escaped con guration). On the other hand, trend  defects have

core, where the order parameter has low values similar to isotropic phasg.&Hilg) illustrates

some cholesteric disclinations that can appear in experimental observations. Besides the bulk,
irregularities in the director order can also appear at the boundaries of the geometry where the
LC is con ned. In this case, topological defects that often exist on surfaces of ordered media
are named boojunvp).

Dielectric and optical anisotropy in the LC media

Different effects may arise when an electric el8is applied, reorienting the mole-
cules in the bulk due to the presence of natural and induced dipole moments. As the LC is an
anisotropic media, the polarization parameters are different depending on the bulk orientation.
For the uniaxial symmetry, the dielectric constant along the preferred ayis different from
the perpendicular axis {). It means that there is a dielectric anisotropy, and it is de ned as

="k "o (2.4)
The dielectric contribution to the free energy is
1
fg = §'® ® (2.5)

where ®is the polarization in the LC media. In fad®has a parallel and a perpendicular
componentsZ6),

B
)

" Be® (2.6)

h i
" B BPe®; (2.7)

where ¢ and - are the dielectric permittivity of the media ahglis the dielectric constant in
the vacuum. A€®= B, + 8 then

="y R+, B (2.8)

Considering thaty = 1+ yand", =1+ ,,whichleadsto = ", and thatjustthe rst
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term on the right hand side of ER.8) depends on the director, the contribution on the free
energyfy can be rewritten a2p]

fa= ="o " ® ® (2.9)

NI =

So, if " > 0, the directors tend to orient parallel to the electric eld trying to minimize the
energy, whereas if" < 0 the directors orient perpendicular 8

It is convenient to understand how light propagates through a LC material. For an
isotropic media, light propagates with the same speedcen in any direction, where is the
light speed in vacuum analis the refractive index of the material. Light propagation in LCs
may behave differently due to the anisotropy present in the medium. Speci cally in uniaxial
LC media, where the optical axis coincides with the dire@othe light beam splits into two
rays traveling at different speed. The reason is that the refractive index along the optical
axis has a distinct value compared with the normal to the optical axis. The refractive index
attributed along the optical axis is given by, while the other two short axes are relateah$o
Fig. 2.9 shows the schematic representation of a linearly polarized light (LPL) passing through
a material oriented parallel (a) and (b) perpendicular to the light polarization sense. Similar to
dielectric anisotropy, these birefringence properties generate the optical anisotnpple (hed
as

nN=ng Ny (2.10)

The material is classi ed as optically positive (negative) if > 0 ( n < 0). One can observe

that for optically positive materials, light propagates faster in the short axes than in the longer
one, sincen, < ny. The reciprocal situation holds valid. The wave vect ifdicates the
direction of light propagation.

Fig. 2.9: A linearly polarized wave can observe thg refractive index if the polarization is (a) parallel to the
optical axis or observe, for (b) polarization perpendicular to the material alignment, in which there are two
possibilities. The red lines are the electric eld changing as the wave propagates, and the blue line represents the
direction of the wave propagatid®

Supposing that there is no free charge in the material, the Maxwell equations show
that the electric eld of light beam must be always perpendiculaftdying parallel to the
plane of propagation. If light passes through an isotropic media, the electric component is just

L3Bjaxial LCs split light in three components, one in each perpendicular axis due to the three different refractive
indexes.
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Fig. 2.10: Indicatrix of an (a) isotropic media, where the refractive index is the same in any direagioaduces
to the refractive index), and an (b) anisotropic one, like the LC molecules (which slip in two components). (c)

Particular case for a plane wave travelind®direction parallel ta axis, which observes th® refractive index.

Fig. 2.11: Schematic representation for the general propagation of an extraordinary wave, where the direction of
propagatiof®makes an angle with the optical axis® observing an effective refractive indexs.

in uenced by the ordinary refractive index, regardless the material alignment direction and
how the way the electric eld vibrates, as illustrated by the indicatrix in Bid0-(a). For an
anisotropic media, ifis parallel to the material orientation, no matter where the electric eld
is, in the plane of propagation, the refractive index in uencing the electric eld will befgst

In the perpendicular propagatiam, or n, can in uence the light performance depending on the
direction in which the electric eld oscillategtp, 80], as shown in Fig2.10(b) and (c). The
phase difference J generated between the two rays in a general case, Wtd the material
orientation represented ®makes an angle, as illustrated in Fig2.11, is given by P1,45|

2
— Nef No d (2.11)

where is the vacuum wavelength,is the sample thickness ang is the effective refractive
index in uencing light propagation. According to Fig.10(b), using the relatiofk = neg! c,
and considering that the electric eld components of the wave velctaand ky “feel” the
refractive indexne, while k; is in uenced byn,, the ellipse equation allows us to rewrite the



2.1 Notions of Liquid Crystalline Phase 38

relation for the effective refractive inderds) as B1]

k2 k)z( + k)zl kg
_ 4tz

— = — (2.12)
N2, nZ nZ
By geometrical relations,
sin = sl cos = —=2:
-k Tk
So, itis possible to nd that
NoN
Neff = P o= : (2.13)

nZsir + n3cog
If a nematic sample is observed between crossed polarizers, @the angle between the
polarizer and the optical axis of the material, the normalized intensity of the transmitted light
whenfand®are arbitraries, like sketched in Fig.11, is given by §5]
" I#

. . NoN
| = sinf12 Osir? d B °° No (2.14)
nZsir + nicog

Optical properties of cholesterics

The optical properties of cholesterics are quite different from nematics and there is
a relation between the pitch and the light wavelength. Notably, p is much larger than
the molecular dimension and light transmission properties can be dictated by three kinds of
regimes. Firstly, for cases whepe , known as Mauguin limit, the cholesteric behaves
as a thin nematic where light is transmitted by rotating through the helix. This is the regime
which happens for twisted-nematic displd§sDue to the molecule anisotropic nature and the
continuous rotation of the direct@ cholesterics can act as one-dimensional Bragg re ectors
if the pitch is comparable with the light wavelength passing through the sanmple, (). It
is known as photonic bandgap which may exist only for circularly polarized light (CPL) with
the same handedness of helix rotation sense. To put it differently, the photonic bandgap is a
narrow region in the light spectrum in which polarized light with the same rotation sense of
the helix is re ected P3,82]. Polarized light in opposite handedness of helix is completely
transmitted because the instantaneous component of electric eld in the light is not identical
to the cholesteric helix shap@3]. By means of Maxwell's equations, both theoretical and
experimental studies could be combined to explain this phenomena in a certain grouBaf LC [
84], mainly found in derivates of cholesterol. Considering normal incidences for the light, the
maximum re ectivity of an incident CPL in a sample with thickness described isygiven
by [26]

Rmax=tantf  n L (2.15)

max

14 a typical twisted-nematic display, the surfaces with planar anchoring are with the riébitwgisted.
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where the maximum wavelength is written a6,[85]

) 1ne + NR°
max = pmi = p%; (2.16)

wheremi is the refraction index average. The main responsible wavelengths for determining
the region of wide plateau in Bragg re ection are determined §% pn, and ¢ = pne. So the
width of re ection band is

=p n (2.17)

Cases of light oblique incidence have some quite different features. It causes a displacement
of maximum Bragg re exion and emergence of high order re ections with complicate spectral
and angular dependenc25[82]. Although the changes in theory are not simple, the oblique
incidence is useful for studying polydomain planar struct@@. [Finally, the third case where

p , the light is again transmitted as if it was in an isotropic media with sp=bai .

CLCs become unigue materials in nature with high variety of applications for presenting such
a diversi ed optical properties.

To brie y summarize, LCs are anisotropic media that present optical, electrical and
mechanical properties which allow them to be applied in many optical devices beyond LCDs.
Such properties are better understood if the order in the medium is well described. Previously
mentioned, the Frank elastic theory indicates the energetic cost of nematic LCs distorted in the
space. An alternative form of energy is described by the Landau theory, where the energy is
expanded in terms of the system order and predicts rst and second order phase trar@stions [
Second-order transitions are characterized by continuous change of the order while phase tran-
sition occurs, for example the transition between paramagnetic and ferromagnetic phases. The
LC medium is composed by molecules which interact via van der Waals potential. Considering
the molecules such as represented in Big, they have anisotropic shape. It implies that the
interaction is anisotropic and the molecules may arrange the longer axis in a different form of
the shorter axes. The average under a considerable number of molecules may bring information
such as the order in a small region in the volume. Such information can be better understood
by molecular theories, such as the theory of Maier and Saupe linked with mean- eld approxi-
mation. To make it easier to understand the molecular order in the system, the next section will
introduce the mean- eld theory and explore its applications in LCs.

2.2 Mean- eld theory

The mean- eld theory provides, in a rst approach, great results to explain critical
phenomena like phase transition by introducing an orientational order para®eteo( LCs,
the molecules tend to be oriented at the same direction of their neighbors. For this reason, in
a mesoscopic perspective, we can represent, on average, an speci c direction represented by a
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vector named “director”. Notably, the nematic phase in LC possesses a high orientational order
of directors over the space in the bulk, but it does not happen when the LC is in the isotropic
phase, where the molecules are totally disorde?éf |

The procedure to develop the theory is made up of some fundamental steps. Hamilto-
nians of molecular systems are not quite simple to be used for analytical purposes. One of the
reasons is that larger systems usually have impracticable solutions for desired physical quanti-
ties. The rst step is to approximate the many interacting-body problem in a system of many
independent interactions of the same type. Then, if one knows how to solve the calculus for
a unique independent Hamiltonian, it is possible to extend the results for the whole system.
It is convenient to notice that in the linearization, the uctuations which arise by the transfor-
mations accomplished are neglectable. The unknown inserted parameters are now obtained by
the self-consistency relation. To put it differently, it is possible to nd out the mean of the un-
known quantity in terms of a complicated self-consistent function and consequently to estimate
its value. Superconductors and LCs are physical examples of a successful description of phase
transition by the self-consistency relation coming from the mean- eld the®fly [

Ising model
Before coming to details concerning the order in LCs, it is convenient to study the
Ising model, a simpler system from the accessible states point of view. Although its complexity
seems small, the analytical solution for phase transition is known for just 86eafd two-
dimensions §9,90]. The three-dimensional case is still open despite efforts already rBade [
92). Nevertheless, numerical methods have been used to estimate the nature of phase transition
for the 3D caseq3]. For the aim of this study just the unidimensional case will be discussed
here.
The Ising model is constituted bY spins localized in sites of d&dimensional lattice.
Each one of them can adopt just one of the two accessible states available, the up state or the
down one. The variable; contains the information about how the spin is situated ini itie
position of lattice. If thd-th spin is in the up state,| receives the value 1, while the down
state assumesl. Supposing the spins are distributed with random values the lattice. The
af nity between two neighbor spinsandj is represented by the interaction enedyy In this
case, it is equal for any pair of interaction, or merdly= J. If the spins tend to be oriented
in the same state as their neighbors, the system has a ferromagnetic ordinatidn>afd
For J < O, the state is anti-ferromagnetic. Supposing that an external eld with intehsgy
presented in this paramagnetic system, the total Hamiltonian of the syldfeoarf be written
as

@) o
H= J i j h i (2.18)

<i;j> i=1
The rst summation comes from the nearest-neighbor sites and the second one includes the
couple spin-external eld.
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The model statistical mechanics can be developed considering the canonical partition
function ZT; h; N° given by

O
ZNIT he = e H (2.19)
fig |
O 06 O 0 @) O
= i exp J i jt h i (2.20)
1= 1 =1 3= 1 N= 1 <i;j> i=1

where the sum in ER(19 is over the combination of all accessible states of the system. The
Boltzmann constankg) and the temperature of the systeh) are included in = 1s1kgT®.
It must be remembered that in this physical problem both entropy and magnetization

are extensive parameters while temperature and external eld are intensiv& ohesording
to Legendre transformations, each extensive parameter has one intensive conjugates As
external eld- and temperature-dependé&hthe connection to thermodynamics comes with
Gibbs free energyQ®)

G'T; ho = kgT In ZNT; ho, (2.21)

in which the magnetization of the system per spin is given by the state equation
mT; he = @ 17 (2.22)

Taking the limit of zero external eld, the quantity above give); T° entitling the spontaneous
magnetization of the system. The challenge is to nd out an analytical expressidn &averal
approaching technigues have been elaborated to succeed in obtaining a result. Some of them are
not relatively complicated and can acceptably describe the quantitative behaviors. One speci ¢
technique that makes it possible to nd the exact solution for unidimensional case is the matrix
formalism de ning a transfer matrix foz, for example.

At this instance, after expanding the summation in R@), it is possible to rewrite
Zy as hyperbolic functions. Using Eq.@1J), g is found to be

q
giT; he = L edcostt o+ € JcosRL ho 2sinhi2 0 ; (2.23)

and consequently,
sinht he

sinffl ho+e 49

mth; T = g (2.24)

From Eq. .23, it is possible to obtain an expression that explains the behavior of the specic

SExtensive parameters depend on the size of each part in the system, while the intensive ones have the same
value.

16Both external eld and temperature are intensive parameters.

"Here, g represents the Gibbs free energy density. The Helmholtz free energy density is obtained by the
transformationf*T; m° = g'T; h®+ mh The other state equation provides the entrsigyh® = @ @?,.
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heat at constant external eldaty), but it is not able to explain the ferromagnetism because
mtO; T° furnishes trivial solutiort®

Mean- eld method
The mean- eld method, known as Bragg-Williams meth&d][ is a molecular eld
approach which presupposes disregarding uctuations in the dynamic varigtdesl ;. The
Hamiltonian in Eq. .18 is bilinear in . The mean- eld approach allows the linearization in
. Supposing the variance inis negligible, so

iy h i 5 h i G (2.25)
or simply,
i j h i j+hii j h jih ji: (2.26)
Due to translational invarianch, ji = h ;i = h i, the Hamiltonian of mean- eldHiy) can be
rewritten as ~
o 1
Hmi= 1zJh i +h° + 5zNJh i2: (2.27)

i=1
The summatior! <i;j> over the rst neighbors in EqX 18 can be written a%zI N, where
z is the number of rst neighbors and the facttr2 appears to avoid repeated counting. The
term multiplying the summation can be understood as the effective molecularhghthat
the neighbors make over thh spin. If the Eq.2.27) is rewritten just with one summation, we
have

<] 1 o
Him = hett i+ =zJh i? = Hi: (2.28)
. 2 -
i=1 i=1
Itis important to realize that by the process of linearizatlgh,j; j°becomesdi? ;°.
This technique changes a Hamiltonian of interacting kind (Ed.§) to a system oN inde-
pendent Hamiltonians (Eq228). The problem consists of exchanging the interaction eld
of molecules byN of them being in uenced by a new mean eld, excluding their own. The
penalty for this is the introduction of a new unknown variaklé.
Furthermore, in a system of independent Hamiltoni@nsan be written ai(')\' where

Zy is the patrtition function of only one spin. The Gibbs free energy in EQ1f furnishes
1 o 1 .
GIT; h°=N QZJh i< —In>2cosht 1zJh i + h%Y;: (2.29)

Evaluating the average in the ensemblénoff, we nd

~

hi=h,;i =% ie M =tanh» 1zJh i + how (2.30)
i=1

8The speci ¢ heat at constant external elddg = T 1@ @?¢,.
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Based on the de nition of magnetization, the state equat®o?? gives
m = tanh» zJh i + h%% (2.31)
Thus, itis possible to explain i as being the average magnetization of the system, and nally,
m = tanh» zJm+ h%%, (2.32)

which is a self-consistence relation. After a detailed analysis, this result shows solutions for
m, 0, even in the absence of external eld and therefore, the existence of spontaneous mag-
netization under some conditions around critical temperature. Furthermore, the energy density
and its rst derivative are continuous functions, but the speci ¢ heat represented by the second
derivative presents a discontinuous behavior surrounding the region of phase trdfisition.
deed, the Bragg-Williams method can explain ferromagnetism and can predict a discontinuity
for the speci ¢ heat, but it fails when explaining critical exponents that displays universal fea-
tures. Two years after the Bragg-Williams theory, R. Peierls discovered that the Ising theory for
ferromagnetismg8] and a more sophisticated Bragg-Williams model proposed by Béje [

were equivalentd6].2°

Maier-Saupe theory

After the Ising model has been brie y discussed, it is possible to point out how the LC
behaves, and similarly to develop a mean- eld theory, accomplished by Maier and S&iipe |
98]. Some features of uniaxial LCs need to be considered. Differently from the Ising model,
where the spins could reach just two accessible states, the calamitic molecule can point out to
any direction in the continuum space. If the temperature is high enough to allow changes in the
LC phase, the molecules loose their preferred ordination presented in the nematic phase, behav-
ing as an isotropic liquid. Properties like anisotropy or sensible responses to external electro
or magnetic elds can be understood by the introduction of the orientational order parameter.
The order is lost in isotropic phase, but is hon-zero in the nematic phase. Besides, the rod-like
molecules may have permanent dipoles. Considering the region which de nes the director, the
number of dipoles pointed to the same sens@ts practically the same of the ones pointed
to the sense of @ So, the properties abmust be equivalent to ®(non-polar). An order
parameter which satis es all the previous discussed conditions and is non-polar was proposed
by Tsvetkov P9| as

o1 :
S= hP,icos % = 3 3hcos i 1 ; (2.33)

whereP; is the second-order Legendre polynomium anid the angle between one specic
molecule pointed to a directiahand the average molecular direction in the same region dictated

¥These conditions for derivatives are characteristics of second-order phase transition.
20The Bethe model is an enhanced version of Bragg-Williams theory for order-disorder transitions in alloys with
Bravais lattice.
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by ®
Let 1; ©be the orientational distribution function & The probability of nding
one molecule with an angle in the rangand + d and with azimuthal angle betweerand
+d isgiven by
dP= 1; °d; (2.34)

where the derivative is considered over the solid angjle)( So,

1 1

S=tPicos = d !; °Picos® d i (2.35)

It is important to realize that for the isotropic phase, the molecules have equal probability to
point to any direction, so; °is a constant an8becomes zero. For uniaxials, there may be
no preferential distribution for azimuthal angle, theh; ©°= 1 °and the order parameter
reduces to 1 1

S= d sin 1t °Pyicos © dsin 1o (2.36)
0 0

The Maier-Saupe (MS) theory is a molecular eld or mean- eld treatment which pre-
dicts the orientation of nematics. It is based on a weakly anisotropic long-range interaction
potential. The long-range orientational order is annihilated in isotropic phase, so this effective
single molecule potentidl must disappear if the LC h&= 0. Furthermore, the more aligned
the molecules are, the greater is the in uence of potential over them. Correspontfimgiyst
be proportional tdP,i  S. Also, the energetic cost is lower when the molecular alignment is
parallel or anti-parallel. S&/ must be proportional t®,. The potential suggested by the MS
theory is

V1 o= #SPB?cos °; (2.37)

where# is a constant interpreted as a combination of the average anisotropic interaction param-
eters. According to statistical mechanics, the probability of a single molecule to be oriented by
an angle regarding the director is given by the Boltzmann distribution

1

10=—g V'* 2.38
€ , (2.38)

where the single molecule canonical partition functibis de ned by

1

Z= dsine V" (2.39)
0

Using Eq. .39 in (2.36) one can obtain the expression
1

1 . leos ©
Z . d sin P,lcos ce® SR'cos ®. (2.40)

which is a self-consistence relation that needs to be solved numerically. Introducing the variable
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a= 3 # S2, and taking the parametrizati@os = X, the order parameter becomes

1
1 1 » 1 31@&
S== dxPx0%e® = —+ ———: 2.41
Z o, Xrexe 2 27 @ (2.41)
Each value of furnishes a value fo andT. The connection to thermodynamics comes with
Helmholtz energyF = U T , where the internal energy = NHie 2 and the entropy

= NkglnZ[26]. So

1
1

f= %#S2 1 . dxP,1xoe?* (2.42)
According to Maier and Saupe analysi&7[98], there are at least four interesting

regimes to be examined for the reduced temperature paranmretkgTe#. We clarify each one

in Fig. 2.12 The rst of them (Fig.2.12(a)) occurs when > 0:222 only S = 0 satis es the

self-consistence relation and the LC is in the isotropic phase. For the second reginZel(Fig.

(b)), = 0:222bothS = 0andS = 0:3235are solutions, howeves > 0 provides an unstable

equilibrium. So, the LC still prefers the isotropic phase. The third regime gig-(c)) hap-

pens whe:2 < < 0:222 In this case, there are at least three solutionSfan which one of

them isS = 0 and the two others witls > 0. Supposings, and$ are the other solutions and

S < S, the intermediate valug is the unstable equilibrium for the energy and bSth 0 and

S are stable ones. Within this interval, if = 0:2202 the variation of Helmholtz free energy

must vanish, and the MS theory predicts a phase transitionSyith0:429[98]. As mentioned

before,S = 0 and S are stable solutions, b& gives lower energy thas = 0. So, the LC

prefers to organize in such a way ttf&t S, rather tharS = 0. The last regime (Fig2.12-(d))

happens for < 0:2, where there are just two solutiorS,= 0 andS > $, but the case for

S= 0is an unstable equilibrium. Therefore, the order parantetelS; may be the solution for

nematic phase, whil8 = 0 becomes unstable. To summarize, the order parameter decreases in

the nematic phase frod100 (perfect order in absolute zero) @429 while T increases till ¢.

Then, it passes through a gap directly to 0 when , transiting to isotropic phase, character-

izing a rst order phase transition, since the order parameter has a discontinuity in its derivative.

Some points about the MS theory are highlighted in this study. This is a long-range
interaction model that seems to be in good agreement with experimental results for phase tran-
sitions [L00,101] and for the temperature dependenc&$102 103 in LCs. On the other hand,
the theory disregards short-range repulsive forces that play an important role for uid organiza-
tion [104]. In contrast, other theories only based on short-range repulsive interactions, like the
Onsager approximation, do not exhibit consistent results with parameters found in experimental
phase transitiond9, 105. An alternative solution for this impasse could be considering both
the long and short range forces together in a theory. The disadvantage for such model would be
determining# because both forces have in uence over it. Furthermore, it would not be possi-
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Fig. 2.12: Graphic representations for different temperature regimes according to the MS theory. The curve (I)
is given byS = 2 a3 coming from the parametrization and the curve (ll) is dictated by E4.1). (a) The rst
illustrated situation is the regime for high temperatures, »r 0:222, where just the intersection point M is the
solution, orS= 0. (b) In the second case= 0:222 the curve (l) sloping is smaller in such a way that (I) intersects
the (1) in both points M and N; in M the order parameter 0, and in N,S > 0; S = 0 s the stable solution.

(c) The third regime, where the reduced temperature0:2202is a bit smaller, there are three intersections, M
(5=0), N (S= 5) and O 6= $); the intersection N represents an unstable solution and O gives a less energetic
costing solution than M; so the nematic ordering prefers the solution O. (d) The last case happens Ot

where the interception N is the stable solution and the nematic pigfers.

ble to know which anisotropic force would indeed dominate the molecular organizatéh [
Luckhurst and Zannoni suggested that the solution for such apparent controversy would be con-
sidering that both forces are important for determining the organization of LC molecules, but
each one would be acting in different level9[].

2.3 Lattice model and pairwise additive potentials for LCs

Molecular theories allow a better understanding of the crystalline order in microscopic
level. In contrast, intermolecular interaction potentials are not exactly known. Besides, statis-
tical mechanics for such theories are dif cult because of the complexity of calculations. An
alternative which can help on the interpretation of molecular theory, but cannot replace it, is the
computational simulation. Such tool could still require a hard interpretation of results, but it
can be a source of important additional information about the LC properties and structure.

The rst key point to be introduced is how the LC will be represented in the simu-
lations. The simplest form to simulate the LC by computer methods is supposing the bulk as
a lattice headless spin systefitDf], where the spins represent long axis of molecular orien-
tation. Here, the signi cant change is that the model is not governed by continuous theory
anymore, since the lattice is now discretized. It is worth noting that a simple spin model be-
comes a vividly convenient and easily modi ed tool to simulate realistic situations. In fact,
the lattice model approach for LCs agrees with experiments if rotational invariance is main-
tained [L09 110. Studies of self-organized supramolecular architectures, like LC droplets with
different boundary conditions at the surface, have been performed by this techiidqu#]7].

Lebwohl-Lasher model
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The rst work that implemented the lattice model was developed by LashHij.[
Lasher model supposes that nearby spin interaction is proportioidl tmos jx where i
is the angle between the symmetry axes of spins at piteslk.2? This model supposes that
the spins could just assume positions along the center of a dodecahedron towards the center
of each face. Results for this show a rst-order phase transition of the order parameter, but a
critical value of0:82. Whereas, MS theory predicts a transition aro0m8. Lasher suggested
this disagreement could happen because the accessible states of spins linked to the faces of
dodecahedron do not present enough points for converging it into a sgli€fe@n the other
hand, Lebwohl and Lasher improved this rst model allowing the spins to adopt any direction in
space ]. This signi cant change makes the number of accessible states in the Lebwohl-Lasher
(LL) model suf ciently large and thereupon a weak rst-order phase transition is found, where
the critical value for the order parameter is aroQrB.

In LL model, the interaction energy between a pair of neighbor moleculgg (s
given by

k= "Po & & = "P2 cos j ; (2.43)

where the exchange energy paramétgrg a positive nonzero number for the nearest neighbors
of j-th spin, and O for the others. Since the interaction is over the nearest neighboring, the total
energy of a single molecule can be written as

O
i= " P> cos jk ; (2.44)

<k>
where the summation is over tleths rst neighbors. ThéN-particle standard canonical func-
tion (constant number of spiri¢, volumeV and temperature) is
8 4 8 & O 9
N = -5 &P " P> cos jk S (2.45)

> >
DiEL 4 ; : <jik>

1

Originally, the purpose of the potential was to describe phase transition and order pa-
rameter at molecular levels. In contrast, LL model gives a good representation of orientation
properties for real nematics, suggesting an alternative interpretation for spins as being directors
if the system has a scaled temperature,(de ned asT = kgTe", quite bellow the isotropic-
nematic transition temperaturg () [116 118-121]. It would be convenient to know how the
LL model can be connected with the continuous theoretical model proposed for the nemat-
ics. For one-constant approximatio;i( = K), the Frank energy density in ER.() can be
rewritten as 122

f = %K r®: (2.46)

That is, this approach effectively gives an energy which depends only on the variation of

2Each spin represents the long axis of a single molecule.
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through the surrounding space, since each elastic constant is not distinguished. Likewise, LL
model has an energy dependence on the spin relative orientation around a speci ¢ region, and
hence, it corresponds to the one-constant approximation for nematics. Although the model
satisfactorily explains the nematic behavior for systems with temperature quite faf fo

has a limitation in discerning splay, twist and bend deformations.

Gruhn-Hess model

In order to investigate the microscopic behavior in the bulk, it is possible to construct
a pairwise additive interaction in different ways, which roughly mimics the elastic energy den-
sity [3,123. In contrast with the aforementioned model, Gruhn and Hess rstly proposed the
discretization of the Frank free enerdgdj.[ From another perspective, the Gruhn-Hess (GH)
model rewrites the energy in a tensorial form where nematic symmetry is preserved and deriva-
tives are appropriately taken in the difference of neighbor values. The dimensionless expression
for the energyf in three dimensions for nematics in the absence of external eld is de ned

as 3]

| 10 & GG . 2 66 ..
f ol j;ke = 5 Ky, Dd‘S ke + Ky Koy, Ddf 1 j; kO
rist= 1 ;o =1d=1 =1 d=1
. !
1 G O isto ’
t 5 Keg Ky ngli; j; k°D ;= s j ko 4; (2.47)
;=1 d=1

wheref is given by the arithmetic average over the eight asymmetrical discretizations of the
derivatives

Dir;st"li; i ko
D;r;st"li; i ko
D;r;st"li; i ko

nni+r;j;k° nnj; kS

nnij+sk® nnij; ke

nnij;k+t° nnij kS

withr;st 2 f1, 1g. Itis convenient to point out that the indexeand are related to the three
components of the director, whiteis related to the dimension of the grid system. Pursuing the
one-constant approach for EG.47), the interaction energy between two neighbor spins located
at the position® and®, can be written as

fig@e= — 1 1% & ; (2.48)

2 <|;m>

whereL is the length between the neighbors in the grid. Although Ed.74 cannot be divided
into interaction pairs, the result in EQ.48 differs from Hamiltonian of LL in Eq. 2.44) by
a constant in the energy and by the object interpretation in the lattice. From the LL model,
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molecules are considered to compose the sites while the GH model supposes the sites are set
with directors. Besides, the interpretation of the energetic pararhetar be made with elastic
constant and unit cell size By= Kl+3, wherel is interpreted as the average distance between

the sites.

Under the circumstances of elastic anisotropy, GH model offers possibilities for ex-
tending the interaction energy of LL model between two direc@®m@nd@ in the grid. Let us
consider®) ( ! @ @OJ@ @j) as the unit intermolecular vector linking the center of mass
of both neighboring objects. After expressing E&4() for neighbor directors and identifying
terms like® B6x = aj, ® B = ax, and® @& = bjk, the pair potential can be written as

Eik=j2 1 b +1 [° a+a 2aakbji + %11'3 ji° a+ag 1 by o (2.49)
Looking for some speci ¢ con gurations for the directors, the authors3hdoncluded that
the meaning forj1, j» and j3 are related to the splay, twist, and bend energies, respectively.
Also, simulations carried out with GH model reproducing Fréederickz transitions and Schadt-
Helfrich cell with perpendicular boundary conditions showed good agreement with analytic
solutions B]. Estimates of threshold elds for sevengl 1¢ K3z andK,2e K33 ratios, and how the
director changes the tilt angle while increasing external elds, were found to be different from
theoretical predictions by an order of magnitude near few tenths of a percent.

By writing Eq. (2.49 with second rank Legendre polynomial, we obtain

2 . ) ) ) .
Eix = 5»2]1 3j2 + ja¥uPota®+ Polak® + 2o  ji¥eajakbjk
2 . . . 2 . .
g 3j2  j3/P2tbjk°+ kL j3¥aPola;® + Pylak® Polhj®  (2.50)

Romano expressed the energy parameters as linear combination of elastic constants and rewrote
the energy aslj24]

1
Wik = Pla°+ Plag® +  ajakbjk 5 + Pthjk®+  Polaj®+ Pxlak® Porbj% (2.51)
1
= §| 12K11  3Koo + K33%; (2.52)
= 3 1K22 K]_]_O; (2.53)
1
= 3K 3Kz Ks®; (2.54)
1
= §| K11 Kss% (2.55)

where Eq. 2.5]) differs from Eq. .50 just by a multiplicative factor and by an energy con-
stant.
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Anisotropic elastic pairwise potential for nematics

Potentials describing molecule-molecule interactions have been very required to aggre-
gate relevant information about systems, like attractive and repulsive forces in Lennard-Jones
potential for a molecular eld]25), or the electric multipole expansions in Van der Meer poten-
tial in CLCs [12€. In details, these potentials can depend on the distance between the molecules
or their orientation as well.

According to Stones, a scalar function involving the interaction among a pair of mol-
ecules (independently of their shape) can be expanded in terms of S-fundt&hsHor LCs,

a pairwise additive potential between two directors, which is descendant from S-functions, and
includes spatial orientation information by means of scalar invariants have already been stud-
ied [4,128.

There are at least three primary geometric relations involved in an interaction between
two spins. The rst to be treated is the position of objects relative to each other, expressed by
bjx = ® ®. This is the unique geometric information on LL model. The second and third kind
are given by the relative position between the objects and the direction of unit intermolecular
vector§), wherea; = ® &y andax = ® &). So, the potential is de ned by the expansion

O

jk = Qliiz;isaijlai;bijsk; (2.56)

iniziz
where theg,;,;i,'s are the arbitrary coef cients and thg's represents the expansion order.
Considering nematic symmetr@equivalent to @), it is possible to expressjk, by
expanding Eqg.4.56) till terms of second order, as

1
k= ikt gjab g o+ Palbik®+ YikP2tbj (2.57)
whereYj, = P>'a° + Polac®. For small angular displacements between two neighbor objects,

Egs. €.1) and @.57) allow relating the parameters , , and to elastic constant&;1, Koz
andKs3 by means of4]

% Kip = 3 +2 9
3 Kpp = 3t + ¢ (2.58)
Ksz = 14+ o+ +3

where has the same interpretationloh Eq. (2.51), meaning the length of unit cell lled by

the spin. This is a linear system that relates three elastic constants to four energetic parameters.
Some assumptions must be made to solve these equations. Each kind of assumption may lead to
a speci c interpretation. If we take = 0, e.g, terms of fourth and high orders are dropped from

Eg. .57, but this can be useful for some set of con gurations. Although this parametrization
gives a moderately good qualitative agreement for theoretical predictions, like order parameter,
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the deviations seem to arise from neglecting the high order terms of scalar invadiar@sé
can expect that another parametrization keeps this description in the potential. Supposing that
the energy jkx may be independent of absolute orientation of two parallelly aligned directors,
thusbjx = 1, a; = ax = a. Hence,
h [
K=a’8t + °+ Y gttt o+ (2.59)

is independent ok if = 3t + ©°722 This assumption is essential for describing elastic
interaction between two directord4g. So, the energetic parameters in EQ.58 can be
solved in function of elastic constants as

1

= :—J) 12K11  3Koo + K330; (260)

= 3 1Ky Ky (2.61)
1

= 3 K11 3Kz Kasf, (2.62)
1

= 3 Ky Kaef: (2.63)

One can conclude that the parametrization 3' + C°isimplicitin the obtained expression
by the GH model in Eq.4.50.

The richness of this potential is that it connects the cell size with reduced temperature
by TR kgTej j, which is similar to the LL interpretation df . As the cell size changes in
function ofTg, it can be of considerable interest to establish the range where director uctuation
is connected to continuous theory without loss of generality. The cell size is inversely dependent
on the reduced temperature. So,T§ increases, decreases, and vice versa. lfreaches
molecular dimensions, the elastic behavior and the director interpretation for sites no longer
hold valid. Lets assume a real LC3@0K with average elastic constantshf 10 12 N. If
the reduced temperatufg = 3kgTe K11 3Koz Kazjis 0:20, the cell size is approximately
6:2 10 ®m. For this value, itis necessary aroukfiites to amount nedr0 m in the bulk and
itis aroundlOtimes bigger than the molecule size. So, the site includes considerable uctuation
of molecules and can be interpreted as a directdExperimental results have shown that the
coherence lengthfor director uctuations varies fror@00nm at41 Cto1:0 mat29 C[129.

This is the same scale of cell size in regimesTafnear0:10 in simulations of anisotropic
potential scheme, providing support for interpreting the site in lattice as a dirddtrifLl8-
121,128.

22Consequently, jkk = 1K11 + Koz + K33%3. For single elastic constant approach. = K is the
expected minimum value for interaction.

23If TR = 0:10, the cell size is nea:1 m and around 0 sites describe:0 m. Of course, this is a simple
analysis to illustrate that the regime T far from the transition temperature furnishes interpretation of director
for the spins in the lattice.
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Anisotropic elastic pairwise potential for cholesterics

Supported by the previous section, the extension of pairwise additive potential for
cholesterics is reached by the elastic free energy density for a chiral nematic ib.BqAS
mentioned before, a modi ed LL model has been used for analyzing the LC properties with
an elastic anisotropic pair potential for ordinary nematics. It was derived by evaluating the
gradients in Eq.4.1) as nite increments written in terms of symmetry elements, thus mapping
the pair potential onto the Frank free energyiR8 13(0. Saieli and Luckhurst have generalized
this potential for cholesterics by adding a chiral term scalar invadarto the Hamiltonian ]

~

O o
jk = q1§i2;i3§i4aljla|k2 b|j3kCﬁ(; (2.64)
inizisia
wherecjk = ® ® 8x°. After considering the expansion till rst order correctionayy,
and correlating the discretization of EQ.J), the pairwise additive potential between a pair of
spins, jk, is given by
1 bijk
ik = Ykt ajakbjk 5 + Polhjk®+ YjkPalbj°+ Pllcjkoﬁ: (2.65)
ik
Now, represents the energetic parameter of chirality meaning how powerful the system is to
rotate the helical superstructure. The parameters , and in Eqg. .65 are related to the
elastic constants as

1
= 5 12K11  3Koz + K332 (2.66)
= Ko Kp®% (2.67)
1
= g Ku 3Kz Kes” (2.68)
1
=3 K11 Kz, (2.69)
= Ko % (2.70)
where is the lattice parametéf. In the limit of ! 0, the potential must describe ne-

matics. Two recent works with the pairwise potential for cholesterics were developed in good
gualitative agreement describing the spontaneous stripes formation under the interaction with
interfaces 131,137.

2.4 Interaction with interfaces

LCs are often limited by interfaces. Such interfaces may be originated by the contact
between the LC with other medium. This medium can be a rigid solid or an agueous substance

24The parameter differs from nematic model by a multiplicative factor for convenient representationiof
function of elastic constants in EQ.70.
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or even a gas. These limitations between LC and interfaces may induce organization or frustra-
tion in the system. In other words, the bulk will be in uenced by the interfaces, thus creating
ordered patterns, defect lines, or boojums according to the conditions on the boundaries.

As interfaces break the LC symmetry, the director assembly depends on the compe-
tition between elastic anisotropy and surface distortion. If there is no external torque acting
over the system, the total energy density should be the sum of distortions in thé& vtk
distortions on the interface. The distortion around the interface depends on the medium features
in contact with LC. Different phenomena are found due to effects of interfaces in LCs. At least
three of them can be distinguisheti3[: critical adsorption, wetting or the imposition of a
preferable orientation. The last one is so-called anchoring phenomenon.

Boundary effects of interfaces are often generated in several LC systems by solid sur-
faces. As previously mentioned, the bulk distortions may be in uenced by the surface anchoring
state. This reaction in the volume will depend on the alignment strength along the easy axis at
the wall. The extrapolation length ) is de ned as the distance which the system should have
beyond the surface for the anchoring to be stra&]. Namely, if the strength of alignment is
in nity, the directors near the surface are precisely in the same alignment direction commanded
by the surface. On the contrary, if the surface imposes a weak anchoring strength, the deforma-
tions in the bulk may be strong enough to disrupt the surface alignment ahduld be huge
related to molecular siz&8§].

Interactions with surfaces are commonly represented by the Rapini-Papoular (RP) the-
ory [135. This potential energy is characterized by the energetic cost of switching the director
from the preferred direction imposed by the surface. The surface density energy in RP model is

fs = %W&@ R (2.71)

whereWs is the anchoring energy, which can be physically interpreted as the work required to
rotate the directo®from the easy axi® [136. Measurements by continuum theory and other
procedures like high-electric- eld technique have demonstrated that strong anchoring energy
should be from the order df0 4 J/n? [137-140.

Normally, elastic theory in LC systems is not viable in local regions where the direc-
tors and the order parameter change drastically. So, it is convenient to treat nematic-interface
interactions in simulations considering the anchoring conditions. The lattice model has some
advantages and one of them is the facility to add external interactions with directors. The total
energy of a system where any interface contributes for distortion is given by

t= bukt int (2.72)

The nematic-interface interaction can be locally summarized fpthaspin neighbor to the
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interface as
jint = JintP2 @& @ ; (2.73)

whereJiy; is the anchoring energy am; is the easy axis along the interface. The intensity of
surface alignment depends on the energy of wall-nematic interaction. For the pairwise additive
anisotropic model previously treated, the nematic-nematic interaction is given &yd the
wall-nematic one is now represented Iy = Js. So, forJg , the anchoring is considered
strong and the surface imposes its alignment over the region where it is presentkds If
relatively smaller than the anchoring strength is considered weak.

2.5 Textures

Computer simulations have proved to be a good technique for analyzing observables
like polarized light 116,132 141-143. As LCs are birefringent, the molecules change light
propagation. As a result, the process to get analytical expressions for optical properties could be
quite dif cult, because the refraction index is not uniform through space. It can be interesting
to know how the optical textures would be in the simulations. Calculations to nd textures are
done by a matrix approach in which the optic ray in each site is detailed by a Muiller matrix. It
is a numerical method to study optical properties where the spins are treated as retardants that
modify the polarization of the incoming light beam.

If the beam of light is not monochromatic, the phase amplitude changes in the per-
pendicular axes to the propagation over the time. This suggests that the polarization state of a
polychromatic plane wave may continuously change. If the change in this state occurs faster
than the speed of observation, the light is partially polarized or unpolarized, depending on the
behavior time-average of the polarization st&€.[ This kind of incident light is described by
the normalized incident Stokes vect&() which has four components, given by

e
@n:

(2.74)

O O O
EERER

« =

Hence, the beam will interact with all directors along with a straight line, inside the lattice,
modifying the direction of polarization. This change happens because of the optical element
named retarder, which is responsible for dividing the light into two perpendicular beams (one
time-shifted phase later than the other). As the LC is optically anisotropic, or birefringent, it
can be considered as a light retarder. The incident light interaction with the LC directors is
represented by the Miiller matrli)M() operating in the incident Stokes vector, creating a new
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Stokes vector outing the sample, it means

Q=M K (2.75)

The Miller matrix responsible for this procedure is de ned B$4

ot 0 0 0

_ 20 sirP2 (°cog (°+ cog2 | ° sint2 (°cog2 1 cog ®  sint2 Osint °
: -0 sit2 °cos2 (1 cos ® sifl2 2+ cost2 (°cos °  cos2 (Osint

D sint2 (osint ° cos2 °sint |° cos |°

1 PEEe

where  is the retarder angle given by
!

2 h 2 h Ne 1 - (2.76)

o hm T U RZSi?t 0+ 2cogt |0
and  is the angle between tHeth particle and the light propagation, and is its azimuthal

angle in the plane perpendicular to the incident beam direction. INZEZH)( n, is the ordinary
refractive indexng is the extraordinary refractive index, is the light wavelength of the incident
beam and is considered the thickness of a layi§.

Beams of light propagating through space are represented by its electric eld vector
vibrating in the plane of propagation. For transverse waves, there are two independent directions
of vibration. If these components are uncorrelated, the beam light is unpolarized. If the direction
of vibration happens in a particular direction and the electric eld components differ by a phase
angle , the beam light is linearly polarized. Otherwise, circularly polarization happens if the
electric eld vector components are mutually perpendicular, in other words, they are always
phase-shifted by «2. In case of linear polarization, the polarizer and anali/Ee,n, ancll Pout
are respectively represented by

©1 10
P o= % Do e (2.77)
0 0 00
while for circular light polarization, the polarizer and analyzer are represented by
©1 00
Pon= %8 8 8 g: (2.78)
«1 00 1_

After the light interacts with the sample, the resulting Stokes vector should be give@By [



2.5 Textures 56

144 o

! ! !
®u=Pot Mk Pin & (2.79)

k

| |
where P, and P o are the Miiller matrix representing the polarizer and the analyzer, respec-
tively. Pondering to avoid noises in the signal, it is convenient to get the average over a consid-
erable numbeN; of equilibrated stateslfLf], so that

~

O 10
"y = Ni g (2.80)

The choice for linear or circular polarization may depend on the way we desire to observe the
light transmission in the medium. In fact, the problem of light transmission is reduced to a
linear superposition of monochromatic plane waves transmitted through the LC ass8pbly [
Fig. 2.13shows examples of simulations for Muller texture productions in a (a) nematic and (b)
cholesteric samples under speci ¢ anchoring conditions. InEitf3-(a) the nematic sample is

con ned between a hybrid-aligned cell with degenerated (random alignment) planar anchoring,
showing the Schlieren texture as resulting con guration. In such pattern, when the LC sample
is observed between crossed polarizers, dark and white brushes can be seen, representing ex-
tinction and presence of light intensity, respectively. Regions where two or four alternative dark
and white brushes meet correspond to director singularities in the medium, which can be fea-
tured,e. g, by a point defect or a disclination line. In Fig.13-(b) there is a cholesteric sample
sandwiched between a uniform planar anchoring and a tilted weak anchoring in boundaries of
isotropic phase, where the organization shows a uniform striped pattern wittt&ind defect
indicated by the black arrow.

@) (b)

Fig. 2.13:(a) Schlieren textures in simulations for nematic sample in a hybrid-aligned cell with planar degenerated
anchoring. (b) Simulations for a CLC sandwiched between a uniform planar alignment and isotropic phase showing
a uniform modulated pattern with &2 defect in the black arrow.

250ther textures can be seen in Refs3%, 145.
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2.6 Metropolis-Hasting algorithm

During the simulations, we use the MH algorith@6] to update the evolution of the
system. A spir@) is randomly selected and its energy

O
U= U (2.81)
<k>
Is evaluated, in which the sum is performed over the nearest neighbgrsTaen, it is raf ed
to a new con guratiorﬁ? according to the BW techniqué 46, and its new energylj0 is also
evaluated. If U = UjO Uj Othe new stat@f is accepted. If U > 0,anumbe0 w 1
Is raf ed; if
w p=e Uk (2.82)

the stat@? is accepted, on the contrary, itis rejected. After each spin in the bulk has been visited
to interact with its neighbors at least once, on average, the algorithm completes one cycle, or
one MC step (MCs). The evolution of the process is given with an acceptance rate around 0.50
to improve time-simulation without loss of generality in statistical mechanics.



Chapter 3

Hybrid Aligned CLCs: Role of Anchoring
Energy on the Texture Transitions

3.1 Introduction

As a burgeoning eld of study, both from the basic science and the applications point
of view, the behavior of CLCs in thin hybrid aligned cells, a common situation where one of
the substrates promotes planar orientation whereas the opposite substrate imposes homeotropic
anchoring, has drawn considerable attention in the past few years. Such con guration often
results in a modulated structure (stripe pattern) due to an energetic competition that occurs
between the substrates and the bulk parameters.

Stripe patterns, as they are often referred to, have attracted a great deal of attention
because they can be readily applied as Raman-Nath diffraction grady@s[147). There are
several ways of generating such patterns, including by applying an externall 2t4~150,
light irradiation [64], or by using hybrid aligned cell€D, 70]. Recently, hybrid aligned CLCs
were shown to act as nanomotors that can move objects 10.000 larger than the chiral dopant
itself when the CLC is fabricated with a photosensitive chiral dopari7. In another study,
hybrid aligned CLCs were demonstrated to form striped patterns that continuously rotate upon
UV and visible light irradiation, reaching up 890 rotation of the grating vecto#].

When dealing with nematic LCs, several studies have been reported in order to under-
stand the bulk and surface organization of the directors depending on the elastic properties of
the materials151-154]. On the other hand, when the material is a CLC, several works report
on the importance of the thickness to pitch o) ratio for forming the striped patter@ ). Itis
quite astonishing however that the literature lacks of studies on the effect of surface anchoring
energy on the stripe pattern formation of CLCs, even when considering that hybrid aligned cells
are often used to generate such patterns. This is likely due to the complexness of the equations
governing the system, which involves a minimization process of the Frank free density energy
in Eq. .1 combining the different kinds of deformation, splay, twist and betjd [n cer-
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tain cases, depending on the complexity of the system, analytical pro les of the director eld
become troublesome. One possible solution is to deal with the molecular interactions character-
izing the material by discretizing the sample into small domains placed in sites of a lattice. An
important example is the GH model for a conventional nematic, in which the elastic anisotropy
is involved, discussed in Se2.3. This model was parametrized by Romaetoal. [4, 124],
resulting in Eq. 2.51), and then extended for cholesterics, Efj66), later proposed by Luck-
hurstet al. [5]. The extra term that aggregates the chiral interaction in E¢5 makes two
neighboring spins to be slightly twisted with respect to each other.

Such models are often used in combination with MC simulations. When studying
con ned cells with hybrid alignment, there are some works that report the behavior of nematic
samples by means of MC simulationk2fl, 145 155-157]. Nonetheless, to the best of our
knowledge, there are no reports of CLCs in hybrid aligned cells explored by MC simulations
with the anisotropic potential proposed by Luckhurst et 8l.gnd no studies of the role of
surface anchoring energy on the stripe pattern formation of CLCs.

In this work we present simulations by the MC method in a lattice of headless spins
that represent a cell with hybrid anchoring at the surfaces, considering strong planar anchoring
on the bottom substrate but taking into account the nite energy on the top, homeotropically
aligned surface. Fig3.1shows a schematic representation of the expected periodic modulated
pattern of directors near the homeotropic surface alignment with nite anchoring er@rgy [

It is possible to observe three kinds of arrangement of spins in the bulk when the anchoring
energy at the homeotropic surface changes. Depending on the value of this energy we can nd
a planar organization (or Grandjean texture), an undulated modulation or a frustrated, conical
structure. These arrangements seems to be valid for more than one host LC, and the strength
of the anchoring energy which promotes the structural transition changes according to the host
characteristics. In this chapter we present the simulations aspects to reproduce the hybrid cell
and the results for structure transitions in the simulations.

Fig. 3.1: Schematic representation for the directors bulk alignment. Near the nite homeotropic surface a mod-
ulated pattern of perioll may appear in a cholesteric of pitth (Ryabchun et al. (2015%]. Adapted and
reproduced with permission of Wiley Online Library.)
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3.2 Simulation Aspects

Let us consider the Hamiltonian for cholesterics where the pairwise potential between
a pair of spins, jk, is given by Eq.2.69. In this casef is the orientation of the-th spin, @
is its neighbor spin on the lattice a®k is the unit vector joining them. The parameters ,
, and in Eg. (2.65 can be written in terms of elastic constants ratio as

1 K11 Kss
= — Ky 2— 3+ —/: 3.1
5 K2 2 Koo (3.1)
_ K11
= Kpl —; (3.2)
K22
1 K11 Kas
= — Kypp — 3 — 3.3
s (2 Koo (3.3)
1 Kiz Kss
= D Ky D 3.4
9 ¥ Ky Kz’ (34)
= K220, (3.5)

where is the lattice parameter amg (= dp ) is the reduced wave vector of cholesteric helix.

In order to reproduce experimental conditions, some parameters are xed for all the
simulation runnings. We scale the potential bfand set it to 1) in such way that the pairwise
additive potential, Eq.4.659, recovers the LL model in the so-called isotropic (or spherical)
approach, in which all elastic constants assume the same &84 5.

The simulations take place in a rectangular lattice with dimendignsNy N, with
Nx = Ny. Periodic boundary conditions are appliekinandy scaled directions. Far scaled
direction, the quantityN, gives the number of planes that effectively represents the sample, with
d = N; being its thickness. Apart fromN,, there are two xed boundary layers that imposes the
easy axis direction of each surface.

The interaction of the bulk spins immediately near of both surfaces axis is con-
sidered to be the LL potential, where

j;s = \]spzlbjso: (36)

In this equationbjs = ® @ , and® is the easy axis of anchoring at the surface,
andJs, is the strength of the anchoring energy scaled byhis potential supplies an isotropic
potential describing the surface anchoring, equivalent to RP anchoring erld&gy At the
bottom surfaceJ,ot = 1:00 to reproduce a relatively strong anchoring energy with its easy
axis aligned withx direction (planar) and small pretilt & in z direction related with the
X y plane to avoid the degenerescence of stdtB§ [ At the top surface, we set the easy axis
pointed toz direction (homeotropic) and the valueslyj, ranging from a weak (0.10) to strong
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(1.00) anchoring to observe the behavior of the directors in the volume as the anchoring energy
changes.

We set the reduced temperaturelipt= kgTej j° = 0:10. This temperature is rela-
tively far from the reduced transition temperature of LL model (1.1238), but it is high
enough to induce some thermal uctuations of spifis [At beginning of the simulations, all
spins in the bulk are aligned parallel to the direction of the bottom surface and the anchoring
parameter is the weakest onlgg = 0:100. Then, the sample evolves for 18MIC steps and a
small increment of the top anchoring parameter is performed in order to observe some textural
transition depending on the anchoring energy. A MC step is counted when, in average, all spins
in the bulk are raf ed to a new state at least once. To analyze if a new state will be accepted,
the Metropolis algorithm was applied§]. The maximum rotation allowed for directors was
updated with the BW technique, where the acceptance rate is kept aroudd .5 |

3.3 Results and Discussions

In our simulations, we used four different set of physical parameters, representing four
different LC hosts: E44, E7, TL203 and ZLI4330. We shall describe the main results using
the E44 parameters, and later summarize the results for each host in table form. The nematic
E44 has the ratio between the elastic constants givelt Koo = 1:19 andKsze Koo = 2:15.
Besides, the termy, (= poe ) typifying the doping by a chiral agent was xed 20 lattice sites.

Then, the numerical parameters of the potential in E4){3.5) are given by

=0:38641 = 043187 = 1, = 024245 = 0714 (3.7)

The mesh size was set up in such way that the length aloagdy direction is three
times the reduced pitch, amd pg = 0:50in z direction. So, the lattice was performed with a
dimension o661 61 10spinsalong ,y andz axes.

It is quite remarkable how much the surface energy parameter in uences the bulk or-
ganization of the stripe pattern. In the range of top anchoring energies analyzed, there are three
kinds of ordering for the spins in the lattice. Whég, is small enough that the top surface
in uence is almost unnoticed by the bulk, the spins prefer to maintain the cholesteric helix axis
inthez direction (Grandjean texture). This quoted situation happengdgtess than 0.290.

In this region, the simulated results for the pitch is roughly the theoretical pliglsifes to
complete half pitch), as illustrated in Fig.2 for Jp = 0:260.

We de ne asJit the value ford,p that makes the arrangement of directors in the bulk
change from planar to the striped pattern. Wiigp grows and it becomes bigger thar290,
the striped pattern emerges in the bulk by forming undulations, as shown i8.Bjgor an
illustrative value of},, = 0:400. In this case, the easy axis of the top surface has a considerable
in uence. Near to the top surface, splay and twist deformati@hsake place, induced by the
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easy axis parallel ta . Due to the balance between bulk elastic energy and surface anchoring,
these deformations becomes energetically unfavorable, so the system prefers to lay down the
CLC helix in-plane, with the wave vector perpendicular to thalirection. Here, the helical

axis direction forms an angle of approximatdly with respect to the rubbing direction at the
bottom surface, as seen in the top view con guration illustrated in Eig(c). Also, a Muller

matrix texture is shown in Fig3.3-(d) representing the light interaction with the sample along

the z axis. The procedure to calculate such texture is described in2Z3gcThe texture is

taken from directors in the bulk, calculated over an average of th&@stycles considering

np = 1:50andne = 1:66, an incident light with wavelength0 = 545nm and layers of 0.20m.

For simulations in whichkep begins greater tha@:430, the modulated pattern is not
energetically favorable at the givelpg ratio. We de ne this value adnyay in other words, the
value of Jop that no longer favors the stripe pattern. At this regimekgf > Jnax the system
is not able to get rid of the con guration imposed by the surface and the spins close to the top
surfaces tends to orient homeotropically, following the easy axis, as illustrated iB.&igr
the case oflop = 0:600. Therefore, forde pg = 0:5 and the set of parameters aforementioned,
the system will adopt a frustrated con guration, without pattern formation.

In order to investigate the pattern formation observed for intermediate valuks,of
we analyzed the oscillating behavior of spingiraxis. In fact, the pro le oin? as a function of
spin position at the layer immediately below the homeotropic surface (z* = 10) can be used to
measure the amplitude of the pattern. The measured wavelength of the stripes is around twice
the natural pitch for all the host materials. Hence, we established a tin the quadratic sinusoidal

form, given by

n® = ng,sin %r + (3.8)

with maximum amplitude given by, with the directors on the diagonal of the plane, in a trace

Fig. 3.2: Snapshots fotdp, = 0:260 from the side view in the middle of the sample after 400 kMC steps.
(a) and (b) are showing the plamez andy z , respectively. The cholesteric helix lies i direction and the
simulated pitch seems to agree with the theoretical one.
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Fig. 3.3: Snapshots fod,p = 0:400. Again, (a) and (b) are the side view and (c) the top view i 10. In this

case, itis clear to see how the directors are organizing itself to forming the stripes. From gure (c), the simulated
pitch is43:21, what is approximately twice greater than the theoretical one. (d) Muller matrix texture showing
from the top view the light interaction with the sample.

perpendicular to the stripes direction, nanmedlirection. An example of this tting adjust is
illustrated in Fig.3.5-(a) for Jop = 0:430, where the abscissa axis is scaled by the length of the
sampleNy. By this graphic, itis possible to observe how the long axis of the spins are oscillating
inthez direction, with quadratic modulus of, near0:80, through the diagonal of the sample.
We have plotted in Fig3.5(b) a graphic to observe the behaviorn%g when Jyp increases,
crossingJerir represented as the vertical black dashed line, and the planar to striped pattern
transition occurs. The small uctuations observed on Bi§:(a) and3.5(b) is directly linked
to the thermal agitation of the directors, similar to the behavior of order parameter reported by
Masurier [L28 at the same reduced temperature.

Similar results can be veri ed for the other liquid crystal hosts, as E7, TL203 and
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Fig. 3.4: Snapshots fod, = 0:6000f the side view. The top surface imposes a vertical force idirection that
the system cannot relieve the splay distortion for thipg ratio.

Fig. 3.5: (a) Square of maximum amplitude fdpp = 0:430in function of the director position in the diagonal
of the planex y for z = 10. (b) Behavior of the square of oscillation amplitude as the homeotropic anchoring
energy increases.

Tab. 3.1: Table containing the parameter values for other LCs in addition to E44, keeping xed0:714.

Nematic LC Kiyi*Kzz KzzeKzz  p,  dep N, ot Jmax
E44 1:19 215 2000 050 10 038641 0:43187 0:24245 0288 0430

E7 1:48 228 2084 (053 11 058937 1:13664 0:21049 0364 (0460
TL203 1:97 223 2429 (049 12 Q97249 2:67817 0:07976 0426 Q510
ZL14330 2:00 292 2020 G50 10 100004 2:29600 0:23470 0520 @570

ZL14330. Again, the investigated values are those that keep the energetic ratio between the
natural twist and the nematic ordering energie$= e« °equals td:714, for the same scaled
temperaturéelr = 0:10. Tab. @.1) brings the values for elastic constants and the respective
parameters for each nematic host.

The amplitude of directors for the other nematic hosts are shown iIrBFgBy com-
paring the nematics E44 in Fig.5(b) with E7, TL203 and ZLI14330, in Fig3.6, it is possible
to see that the value ;i is related with the increasing value ldi;. This would make sense
because the homeotropic anchoring at the top surface induces a splay distortion in the bulk,
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Fig. 3.6: Square of amplitude oscillations for nematics (a) E7, (b) TL203 and (c) ZL14330. According to results
reported on Tab.3(1), the critical value forJy to the structural transition occurs is 0.364, 0.426 and 0.520,
respectively. Each point was collected after the sample was evolved 08tkMC steps for the values akqp.

since the anchoring at the bottom surface is planar.

If the anchoring is considerable weakf, < Jit), the spins prefer to hold the cho-
lesteric helix rotating along of the direction. Whenl,p, increases passing the critical value
(Jop > Jerit), the effects of top surface have more in uence over the bulk, mainly in planes
near the surfaces, and the splay distortion starts to be imposed by the homeotropic alignment.
This energetic coast provided by this vertical force starts to compete with the chirality of the
medium, so the undulated pattern takes place in the planesnear the top surface. A sim-
ilar situation about the role of splay elastic constant in this pattern formation was reported in
reference T] when a CLC con ned in treated planar substrates suffers the wetting transition
phenomena forming the undulated pattern. WKep K»>» grows, the directors try to avoid the
energetically unfavorable distortions, hence, the vdjgyeincreases. Crucially, all nematics ex-
cept E44 present a high discontinuous change in amplitude of oscillations resulting in a sudden
structural transition.

In this chapter we discussed the results found by applying the Luckhurst model in a
rectangular hybrid cell geometry with periodic boundary conditions. However, besides exper-
imental behaviors, in the next chapter we will investigate how such model performs in simu-
lations for describing the striped pattern formation in a dynamic thin cholesteric layer, which
appears in experiments after wetting phenomenon.



Chapter 4

Striped Pattern Formation After Wetting
Transition in Monte Carlo Simulations

4.1 Introduction

Spatially repeated arrangements frequently occur in nature. Such orderly outcomes
are formed in consequence of one or more driving forces, yielding beautiful and, more im-
portant, functional patterns in self-organized systets] Snow akes, body segmentation
in animals, sand dunes, complex organization of cell fates, the circumpolar hexagonal storm
in Saturn L60, Belousov-Zhabotinsky chemical reactiot6[l] and Rayleigh-Bénard convec-
tion [167 patterns are just a few examples of pattern formation. In many cases, replicating a
naturally occurring pattern in a synthetic system is key for understanding the physics involved
in a determined systeni$3. Due to the multifaceted structures and phenomena LCs might
present, they are terri ¢ candidates to be used as synthetic, stimuli responsive media for sim-
ulating naturally occurring system&g4]. In this context, LCs have been extensively studied
for their incredible patterns. Such patterns may arise as equilibrium arrangements resulting
from external forces such as applied eld, light illumination, con nement (anchoring medi-
ated) R6,66,67,165166 or as dynamical instabilities frequently observed in electroconvective
patterns 167] and surface driven non-equilibrium patterd$§. The correct connection be-
tween naturally occurring patterns and the ones fabricated in a LC system can only be made if
the synthetic system is well understood, which is often done through numerical simulations.
Supramolecular heliconical arrangements in soft condensed matter such as CLCs are
in the limelight center of scienti ¢ attention. In such materials, as in condensed matter in
general, interface and surface phenomena play very important¥d@®1p69-173), determining
the bulk directors orientation and are of fundamental importance for LC deVigés1[74,
175. In general, when a CLC sample is added to a planar treated cell, the helical axis is
oriented perpendicular to the substrates, with the twist happening from one substrate to the
other. This con guration is often called standing helix (SH). Upon certain stimuli, the helix
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might be induced to form with helical axis parallel to the substrates, forming a striped pattern
often called lying helix (LH). Recently, stripe pattern formations were studied in a mixture of
nematic LC with chiral dopant under wetting transitioh176,177). In [7], as to the system
studied here, after the wetting transition a thin CLC layer is formed between the planar oriented
substrate and the isotropic state at which the director weakly anchors with large tilting angle
with respect to the interface. Fig.lillustrates the process of surface induced phase transition.
Fig. 4.1-(a) shows the usual phase transition that occurs in the bulk whilelRigb) shows the

layer that forms at the surfacés.

Fig. 4.1: lllustration of (a) a usual phase transition in the bulk and (b) a surface induced phase transition.

The stripes appear as the result of chirality, wetting, elasticity and surface strength
interplaying, generating a beautiful and dynamic pattern of defects and rotating stripes, that
may be use to mimic biological structurds3[J. In referenceT], the experimental results were
interpreted with theQ-tensor relaxation metho@§]. However, this method is purely elastic
and no information about thermodynamical quantities, such as thermal uctuations, are taken
into account.

Here, we explore experimentally and by MC simulations the pattern formation in a
CLC sample during a wetting transition. Experimentally, we observed that the transition from
the uniform state (no pattern) to the striped state may happen in two distinct ways: the stripes
might appear uniformly everywhere simultaneously or the stripes may nucleate one by one until
the whole eld of view is lled with the striped pattern. Indeed, this dual behavior depends on
the de p (thickness to pitch) ratio. This behavior has been observed before in planar oriented
cells under an applied external eld81]. The nucleating type of stripe was called growing
modulation (GM) while the homogeneous case was called developable modulation (DM). As
reported in referencerp], the GM type happens typically fatep > 1:5 while the DM type
happens f00:5 < dep < 1. Forl < dep < 1.5, reference T2 reports a non-uniform tex-
ture. In reference?] was reported that the stripes are formed dep 1, but no further
study was conducted on this matter. In a recent publicafihrd[stinct behavior of stripes that
form in CLC shells under weak anchoring strength was reported, including nucleation of new
stripes. Here, we report on the formation of patterns occurring for much lower valur®,0f
for both types of modulation (GM and DM), indicating that surface anchoring plays a major

n this case, the wetting transition occurs when the contact angle between the LC and the surfac® goes to
by the change of temperatureqg 179.
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role in the LH formation, since such behavior is not observed in conventional studies of lying
helix in strongly anchored cells. Hence, it is important to explore the problem by considering
simultaneously, the elastic anisotropy, anchoring strength, and thermal uctuation effects dur-
ing the pattern formation. Our model is based on the MC method with the MH algoritfm [

A discretized pairwise additive potential between domains is Usledrhis potential with the

MC method combines altogether the main ingredients to describe the experimental data: elastic
anisotropy, chirality, thermal uctuations (necessary for the GM type modulation) and variable
anchoring strength. To the best of our knowledge, this is the rst application of the potential
to this kind of phenomena. Furthermore, we report GM and DM instabilities happening for
dep < 0:5. By using the Muller matrix approach, textures are built to compare the experi-
mental images observed between crossed polarizers with the optical images calculated from the
simulation. We verify that this simple model is able to reproduce many features of the pattern
formation process, including the type of modulation; and can be very useful in describing the
mechanisms that conduce the system to this particular molecular organization. In this chapter,
we describe the experimental setup and the experimental discussions, the simulation details and
its results, and nally the discussions.

4.2 Experimental Procedure

E7 (Merck) was used as the nematic host. The CLC mixture was made by doping the
nematic LC with the chiral dopant S811 (Merck). Here we discuss the wetting phenomenon
after the isotropic to chiral nematic transition (INransition for two different concentrations
of S811. In one of them, E7 was doped willv6% (weight) of S811 generating a pitch of
1300 m, while the other was made with24% (weight) which leads t@:00 m of pitch?

The material was accommodated between two glass plates forming a slab with measured cell
gap of approximatellO m. The cell's substrates, which have an area of approximatély

c?, were coated with the polyimide P12555 and homogeneously rubbed, producing a strong
planar anchoring. P12555 is crucial for the work developed here. It has high af nity with LC
molecules, favoring the contect with the LC phase rather than the isotropic phase. The use
of this polyimide to favor wetting transition was rst described in referenge [The cells

were lled by capillary force in the isotropic state and were studied under a polarizing optical
microscope (POM); the temperature was controlled with a hot stage (HCS402 Instec).

First, the temperature is increased a few degrees above thghHse transition. Then,
the sample is cooled from the isotropic to the CLC phase with cooling ratio of @a@in.

The textures were observed under a POM and textures (photographies) were taken in 30 s in-
terval. When the temperature drops below the critical valwe the LC phase occurs near the
substrates rst, induced by the surface and thus wetting the substrate and forming a thin layer
because the polyimide has great af nity with LC. As reportedi) {he thickness layer can be

2The experimental pitches were also con rmed by the microscope ruler.
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determined from the transmitted light intensity vs. temperature. It is important to stress here
that if the cooling process is stopped, the observed pattern remains still untill any further change
in temperature occurs. Therefore, thermal gradients can be neglected in our analysis.

Initially, we discuss the phenomenon that emerges just after the wetting transition, at
which the thin LC layer forms. Figd.2-(a)—(d) shows the POM textures for the sample with
pitch of 13:00 m as the temperature is decreasing. As discussed]imafter the wetting
transition iy  60:10 C), the LC layer is too thin so no modulation is observed. We observed
that light extinction is no longer possible as the sample is rotated, although the intensity of
transmitted light is much lower than the sample with smaller pitch cell. It indicates that a small
amount of twist develops with helical axis perpendicular to the substrates, thus allowing a small
amount of light to get through the crossed polarizers, which is shown iftEda).

As the temperature of the system is continuously decreased, the wetting layer grows.
When a critical value fodep is reached, stripes start to nucleate from defects and spacers,
spreading over in the eld of view; this is characteristic of a growing modulation (GM), as
shown in Fig.4.2-(b) and4.2-(c). As the temperature is further decreased, the stripes tile the
whole eld of view, leaving the undulated pattern shown in Hg2-(d). The entire process
of undulated pattern formation happens withidO C. Notice that the overall direction of the
stripes rotates as the temperature is lowered.

The second kind of structural transition is illustrated in Fg@ for the sample with
pitch of8:00 m. The initial process of cooling is similar to the previous case. Here the wetting
transition happens iy = 59:20 C. Initially, as in the previous case, only a very thin layer
forms, Fig.4.3-(a). At this stage, light extinction occurs since the rubbing direction is parallel
to the polarizer direction. However, as the layer grows, light extinction occurs only upon large
rotation of the cell, since twist starts to develop across the layer. This effect is more subtle for the
cell presenting GM type, meaning that very small twist occurs prior the formation of the stripe
pattern. This fact is corroborated by our simulations, as we shall discuss latter. As the LC layer
thickness reaches a critical value, the undulated pattern emerges homogeneously everywhere
across the sample, just like the developable modulation (DM) reported in refe@hchn|this

Fig. 4.2: GM type textures. (a) The wetting transition produces a thin ordered layer that increases under the
decrement of temperature. (b) The striped pattern formation is energetically favorablds afteaches a critical

value. The stripes nucleate in different points and spread continuously. (c)—(d) Under further cooling, the stripes
connect and form the undulated pattern. In the gures, A stands for analyzer, P is polarizer and R is the rubbing
direction, which is parallel to the polarizer axis.
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Fig. 4.3: DM type textures. (a) Under cooling the system's temperature, a thin, pattern free layer is formed. (b)—(c)
Whende p reaches a critical value, the striped pattern suddenly forms in a short 1@2@e C) of temperature.

(d) As the temperature keeps decreasing, the LH orientation changes and defects move through the sample, as
described in referenc@]. In the gures, A stands for analyzer, P is polarizer and R is the rubbing direction, which

is parallel to the polarizer axis.

case, the process of undulated pattern formation in the eld of view is completed in a range of
0:20 C, as illustrated in Fig4.3-(b) and4.3-(c), while for GM the stripes need aroudb0

C to be consolidated. As to the rst sample, the orientation of the stripes rotate as the wetting
layer grows. Notice that for the rst kind of modulation, as shown in B, the stripes form
at approximatelyd5 with respect to the rubbing direction. The second modulation, shown in
Fig. 4.3, upon appearing in eld of view, is almost parallel to the rubbing direction. Both stripes
rotate counterclockwise.

4.3 Simulation Model

In order to get some information on the mechanism behind both kinds of modulations,
we used a computer simulation analysis based on the Monte Carlo method in a cubic lattice. In
the experiment reported in Sek2, the thickness of the ordered phase is increasing from plates
to the bulk as the temperature decreases, in the vicinity of the IN phase transition. Regarding
the simulation, the lattice is set to be similar to an experimental slab. Each lattice point contains
an interacting spin describing the director's orientation within a small volume of the sample.
The axes are set in Cartesian coordinatesy , andz (X = X* ,y = ye , 2 = 20 ),
where is an arbitrary length representing the dimension of the unit cell. The whole sample
dimension was taken 50 150 20sites along thex , y andz , respectively. We set up
empty boundary conditions i andy directions because, upon the formation of stripes, there
is a break in symmetry from one side to the othgr [This means that spins on the borders
interact with just 5 near neighbors. Inspired on the model Wittensor relaxation described
in [7], the simulations are started with a reduced number of planesdirection ¢ = 2), in
which the spins are free to rotate. Then, the LC layer growth effect is realized by periodically
releasing a new plane of spins in thedirection.

With respect to the potential, we set the scalar function for CLCs previously developed
in Chap.2, in Eq. 2.69. In this caseg) is the orientation of the¢-th spin and® is the neighbor
spin on the lattice®is the unit vector joining them. By assuming that= = = 0, the
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interaction potential reduces to
ik = P2tbj®+  Pilcjksgntbyk® (4.1)

that is an elastically isotropic potential with the chiral term analogous to the potential obtained
by van der Meer12€ and recovers the Lebwohl-Lasher (LL) potenti2] yvyhen = 0.

From now on, we scale the potential bythus we de ne the reduced temperature by
Tr = kgTej j. In our simulations, the reduced temperature was adjustdg te 0:20, far
enough from the isotropic phase transition, which for the LL model is arduti?32[118).
Although the temperature of the experimental setup is mgarwe are more interested in the
molecular organization of the ordered phase (elastic effects) and for this reason such a low
temperature is crucial.

In the experiment, the temperature close to the IN phase transition is necessary due the
phase coexistence regime. This low reduced temperature in the simulation guarantees enough
order so elasticity plays an important role, but thermal uctuations are still present. In essence,
the model proposed in Eg4 (1) captures the main aspects of the phenomenon, and, it is able to
reproduce quite well many of them. In the experimental situation, the LC is con ned between
the substrate and the isotropic interface. Both of them represent a surface energy term which
can be, from the elastic point of view, described by the LL isotropic potential represented by

jint = JintP2'® @S (4.2)

in which the subindeint = fsub, INg refers to the bottom surface (named as substrate) and IN
interface, respectively. The bottom surface is located at 0, in which the spins lay parallel
to thex direction, thus mimicking the strong, rubbed planar orientation on the substrate. We
set Jsyp = 1:00 to reproduce a relatively strong anchoring, and the directio®gf with a
small pretilt of 3 with respect to thex direction, in agreement with experimental resulik [
and for avoiding degenerated staté8§. It has been measured and theoretically con rmed
[182 183 that LCs anchor at the IN interface with high pretilt 560to 70 with respect to the
interface's normal) and weak anchoring strength. Therefore, in our model, the spins located in
z =d =de* interact with their xed neighbor according to Edt.p), where weak anchoring
strength is achieved withy = 0:10 and the easy axi@)\ tilted in thex direction 60 with
respect to the normal). In the region of the bulk with thicknés§l z  d ), the spins are
free to gyrate and are initially set with components in the same direction of substrate alignment
to reproduce the thin layer ordered of nematic phase after the wetting transition. The initial
reduced thickness & = 2.

We have seb0 kMCs, and after this, the interface rises one plane making the thickness
d ! d +1, liberating sites of easy axis above to be part of the bulk, increasing the CLC
layer. Again,50 kMCs are completed and the previous procedure is repeated. Screenshots from
Muller matrix approach are taken from directors below the IN interface 2&8#Cs, calculated
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over an average of the 1a500 cycles consideringy = 1:50 andne = 1:66, an incident light
with wavelength °= 545nm and layers of 0.20m.

4.4 Simulation results

As mentioned in the previous section, ER.GH) is a pairwise additive potential with
intrinsic chiral contribution provided by . Apart from this term, we investigated several sets of
values of the physical parameters contained in Ed5, each of them representing a different
LC. The selected values for the parameters that appear to best describe the experimental results
were

= 0:35484 =1:16129 = 1, = 0:03226 (4.3)

According to Luckhurstj], can be rewritten as a function of the reduced wave
vectorg (=q )as = 3g? ° whereq = 2 <p . We investigated the behavior of the
system for several values of the reduced pjicli= p* ), ranging from12:00to 30:00in steps
of 2:00. First we discuss what happens with spins for two speci c values &= + ), 1:140
and0:608 where the reduced pitch 16:00 and30:00, respectively.

The rst situation studied is for = 1:140. In this case, the spins start to organize
themselves spontaneously in such a way that the stripes begin to spread over the eld of view
by nucleating new stripes. As discussed before, this is the GM type. The process of pattern
formation occurs in the same way as the experimental situation, starting from a homogeneous
texture and eventually developing the stripped pattern as the thickness grow4.4Km)—(d)
shows the Miiller textures at differedt p ratios while Fig.4.5(a)—(d) illustrates the directors
inside the small region delimited by the white square in the textures 4Hy.plotted in a 3D
view. To clarify what is happening with the directors, each 3D plot has a lateral perspective
from the planex z showing the black dashed square region.

Initially, whend = 2 (dep = 0:125 and, after the evolution &0 kMCs, the texture
is uniform. The material has no space to twist, so the sample behaves essentially as a nematic

Fig. 4.4: Muller textures showing the GM type. (ayp = 0:125 (50 kMCs) — the sample is pattern free. (b)
dep = 0:188(50 kMCs) — stripes start to nucleate and grow across the eld of viewd{p)= 0:250(50 kMCs) —
the pattern is consolidated in the LH orientation. delp = 0:312 (50 kMCs) — under the increase of the thickness
to pitch ratio, the pattern lls the whole eld of view. As to the experiment, defects move across the cell.
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Fig. 4.5: Vectorial eld of spins in the white square of the Miller textures of Hgd. (a) dep = 0:125 (50

kMCs) — the thickness is thin so the sample is not allowed to form the SH con guration by the bottom surface. (b)
dep = 0:188(50 kMCs) — the system starts to nucleate stripesd¢q) = 0:250(50 kMCs) —and (ddep = 0:312

(50 kMCs) — the LH orientation is well de ned.

Figs.4.4-(a) and4.5(a). The striped pattern is not formed at this moment because the strong
anchoring energy at the bottom surface overlaps any other energetic competition. After the ad-
dition of one plane in the direction,d = 3 anddep become®:188 At this ratio, after50

KMCs, black lines starts to appear in the textures, which results from the different refractive
index of the forming stripes with respect to the uniform texture, as illustrated ir4Hgb).

Here, in different regions, the spins change their orientation, forming periodically distributed
orientations of the director where the helix lies down in the plane so that its direction become
parallel to the substrate, as shown in Fdx>-(b). Notice how the stripes “end” at the isotropic
interface, which is not the case if the anchoring energy is Mi@i][ Whend = 4 anddep
reache$:250 after50 kMCs again, the system has enough space so the stripes form the LH
orientation and adjust themselves according to the characteristics of the box simulated, as illus-
trated in Figs. 4.4c) and @.5c). Ford = 5, dep = 0:312 the stripes in simulation follow the
same behavior as experimentally, where the defects move through thexplané&igs. @.4d)

and @.5d) show the con guration aftes0 kMCs. Although the system in the simulation does

not include nucleation seeds in the bulk, it presents the stripes emerging from different areas.
The system is able to spontaneously reproduce this experimental behavior because of the ran-
dom nature of MC simulation.

In the second situation, = 0:608 which impliesp = 30:00. As the rst case dis-
cussed previously, Figs4@a—d) and 4.7a—d) shows the Miiller textures and the 3D plot of
spins in the lattice inside the white square of the textures. The behavior found for the evolution
of the system in the simulation is quite similar to the DM. We report on the simulation mim-
icking this pattern with qualitative agreement to the experimental results discussed 4n3Fig.
Here, whiled is smaller thar7, the spins just keep the SH orientation. Whn= 7, and
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Tab. 4.1: Table containing values of the reduced pitch, the respective values fdhe critical ratiods p under
which the stripes form and the kind of modulation for the energy parameters used.

p 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

1520 1.303 1.140 1.013 0.912 0.829 0.760 0.702 0.651 0.608

dep 0.167 0.143 0.188 0.222 0.200 0.227 0.208 0.231 0.214 0.233
type GM GM GM CM CM CM CM DM DM DM

consequentlyge p = 0:233 the system starts to evolve. After jukMCs, Fig.4.6-(a), an un-
dulated modulation subtly forms, Fig.7-(a), which is con rmed with a smooth indicative of
modi cation in the spins orientation. Contrarily to what happens with GM, after accumulating
10 kMCs, the system shows the stripes quite well de ned. The pattern suddenly appears as the
MCs increase, even falep xed, as illustrated in Figs.4.6b) and @.7b). When the system
reache$0 kMCs, Figs.4.6-(c) and4.7-(c), the spins do not present any signi cant change, just
a small adjustment on the displacement of stripes. Finally, we show irtfagd) d = 9 and
dep = 0:300. The lateral perspective shows in Fig7-(d) a structure modulated quite different
from GM type. The spins change their orientation smoothly. In addition 478xa)—(b) shows
the spins of a slice of the planey overlapping the Miiller texture. Figt.8(a) is the same
region of the white square in Fig.4-(c), and the Fig4.8-(b) is the region around the defect in
Fig.4.6-(d). In both of them, it is possible to compare the result of the texture with the directors
orientation.

Table4.1shows the values for eagh, the values for , the critical values fodep in
which the system starts to suffer the structural transition and the respective kind of modulation.
Forvalues ofp  16:00, the spins present the GM. When 2600, the system presents the
DM. Values between 16.00 and 26.00 present both GM and DM in the eld of view for the same
critical value ofde p; in this case we say that there is a coexistence between both modulations
(CM), like reported by Fuh et al. when the CLC is under a speci c voltad [

Fig. 4.6: Miller textures showing the DM type. (app = 0:233 (2 KMCs) — the pattern starts to develop. (b)

dep = 0:233(10 kMCs) — the striped pattern emerges homogeneously in the eld of viewds(g)= 0:233(50

kMCs) — the system organizes the stripes according to the parameters and the characteristics of the lattice. (d)
dep = 0:300(50 kMCs) — the defect (dislocation) changesiag increase.
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Fig. 4.7: Vectorial eld of spins in the white square of Muller textures of Fg6. (a)des p = 0:233(2 kMCs) —the

spins are in the SH orientation. (B3 p = 0:233(10 kMCs) — as the system is in the critical ratio jA$tkMCs is
enough to develop homogeneously. dep = 0:233(50 kMCs) — after the pattern is formed, no signi cant change

is found because the system has already reached the equilibrium con guratiah.p(¢) 0:300 (50 KMCs) — as

the ratiode p increases even more, the stripes just organize themselves according to the pitch and the lattice size.

4.5 Discussions

We rst discuss the rotation of the stripes. Such rotation occurs due to the continuous
change irde pratio as the temperature is lowered. Since the LC layer has a structure similar to a
hybrid aligned cell (one substrate favors planar anchoring while the opposite favors homeotropic
anchoring), near the planar side the CLC forms a SH structure to follow the substrate's impo-
sition. This small elastic boundary layer dictates the overall direction of the stripes that are
formed right above. Aslep grows, the amount of twist of this standing helix portion also in-
creases, which, consequently, twists more and impose the observed rotation of the stripes. The
observed defects result from the rotation without a xed pofjt Such phenomenon has been
explored before under applied electric eld(], light irradiation [6] and thermal stimulusg0).

From the simulation point of view, the rotation of the stripes is also observed. However, they
require large meshes and are dif cult to work with. We therefore will explore this effect on both
GM and DM type of modulations in a future work.

From the experimental data, we observe that both, the GM and DM type take roughly
the same temperature interval from the rst appearance of the phase (wetting transition) until
the formation of the stripes, thus indicating that the thickness of the layers are about the same
in both situationsT]. Therefore, the critical thickness to pitch ratio, experimentally, is different
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Fig. 4.8: Horizontal slice of the plan& y showing the behavior of spins (a) the GM and (b) for the DM. As
background the Miller textures are contrasting the light interaction with spins below the interface.

mainly due to the values of pitch length of both samples. Clearly, the GM type possess smaller
de p value than the DM type. The simulations agree well with the experimental results when
one looks only at the criticadle p ratio required to the striped pattern formation, that is, it is
smaller for GM in comparison with DM type. In the simulations, the critical ratio for GM is
0:188while for the DM is0:233

The phenomenon reported here occurs experimentally while the temperature changes.
Since the temperature change in the experiments is sitaft {n terms of the reduced temper-
ature), in the simulations the reduced temperature is xed, so the connection with experimental
facts is done by the ratide p. From the statistical mechanics point of view, gy = 0:2, this
interval can be negligible without loss of generality. Therefore, the experimental chadge in
can be directly connected with the simulated changé» m

In order to understand the two types of modulation and the connection between the
experimental and simulated results, we propose the following explanation: as previously dis-
cussed, the fact that CLCs anchor with very low energy strength on the isotropic interface allows
a director distribution in which the stripes form within the interface. In fact, the low anchoring
strength at the top interface allows the director to use the interface as part of the stripes them-
selves, rather than keeping them in the bulk. This fact favors the formation of stripes for very
thin layer, a phenomenon that would not happen in the strong anchoring situation. As shown
in Fig. 4.5-(a), but also in referencé], the initial layer is under strong in uence of the bottom
substrate, in such a way that the LC layer in the initial moments is essentially nematic. Clearly,
as the temperature decreases, the system eventually forms the stripe pattern, but how it does is
directly related to thele pratio. If the system does not form SH in the initial moments, it will try
to form GM type. Therefore, it requires very smadlp ratios where no twist is allowed to form
in the initial moments, due to the strong in uence made by the bottom substrate, but, upon ther-
mal uctuations, each stripe is allowed to nucleate, jumping from the nematic-like arrangement
to the LH organization. There is, therefore, an energy barrier between the no twist arrangement
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and the striped pattern that is overcome by thermal uctuations. In the simulations, the stripes
form for very thin layers, before any twist perpendicular to the substrate occurs. Therefore,
only for smaller pitches the GM type is observed. Experimentally, on the other hand, the larger
pitch cell (in comparison to the DM type) makes this nematic layer to continue as large as the
DM forming layer, which is expected since larger pitches samples require more space to form
any twist (SH structure). Since the sample becomes frustrated, it thus forms the pattern by nu-
cleating stripes one by one. This process therefore is analogous to the nger formation under
external stimuli often found in surface frustrated CLT66,184]. Hence, in both experiments

and simulation the smatle p ratio is required. For the DM type, on the other hand, a small
amount of twist occurs perpendicular to the substrates. In the simulations due to the larger layer
while in the experiments due to smaller pitch. Eventually, as discussed in refei@ntee|
elastic penalty, which results from strong splay deformation at the IN interface and twist de-
formation from the system's frustration, makes the helix to form parallel to the substrates, thus
explaining the largede p needed.

The pattern formation and the critical parameters for its appearance was analyzed in
reference T] with Q-tensor and relaxation methods. The MC technique has stochastic features
aggregated in the numerical simulations. Thereby, the simulation done here is performed from
the statistical mechanics point of view. The potential in 2969 provided both growing and
developable modulations whereas @densor method has found just the developable one.

Altogether, a discussion on why the critical layer thickness of both modulations are
different in the simulations whereas in the experimental cases they are the similar is necessary.
In other words, although thes p ratios agree well for the formation of the modulations, when
layer thickness and pitch are looked separately the experiments and simulation fail to agree.
We believe a few facts might be responsible for this: rst, it is not very clear what values the
pretilt and anchoring strengths assume at the isotropic interface, since there are few experiments
on the subject and the number of liquid crystal hosts used in such experiments is very limited.
Furthermore, the experimental sample has many nucleation seeds such as defects and spacers
that are not accounted for in the simulations. More drastically, CLCs are known to present
different behaviors depending on the elastic anisotropy. The LL pairwise potential does not have
anisotropy included in its interaction, whereas Gruhn and Hess proposed a spatially anisotropic
pair potential. The process is done by discretizing the Frank energy by small displacements,
where the elastic constants (splay, twist and bend) can be distingu@hdgielcently, several
works have been done with the potential in E66 which represents an extension of the LL
potential that aggregates elastic anisotrep,[124,128 130,131,158 185-187]. One possible
link between the energy parameters , , and with the elastic constants is obtained by
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the conditionof = 3t + ©[12§. It leads to the following connection:

1

= 5 12K11 3Koo + K33°;

= Kz K
1

= 5 'K 3Kz Ks; (4.4)
1

= - XK Ks3°%;
9 11 Kas3

= K

For the purpose of this work, the values used in BEgl)(imply elastic constants values given by
K11°K22 = 0:60 andKz3¢ Ko, = 0:70. These values do not represent any known LC but, in our
tests, represent the best set of energetic parameters (i2.68) o describe the experimental
results. It is, therefore, important to stress that the simulations and experiments might not be
represented by the same elastic parameters. Further investigation is being carried out to bet-
ter understand the connection between the simulation parameters and the experimental elastic
constants. However, the simulation model used here is a pairwise potential and the connec-
tion with continuous models is valid in a limited regime with very low temperature and small
deformations 128. Out of this regime, this connection seems to be still a challenging task.
Remarkably, this simple simulation procedure is able to qualitatively reproduce most

of the experimental results. For example, the same LC with different pitches can present, after
the wetting transition, stripes formation of GM and DM type. In the pairwise additive potential
studied here, the same process is observed when the theoretical pitch is changed. Furthermore,
both kinds of pattern formation are observed in the simulations. In addition, the experimental
results indicate that the periodicity of the stripes corresponds to roughly half of the pitch. For

= 1:140 Eq. @.4) givesp = p» ° = 16:00. It means the theoretical natural pitch in this
sample needs at leas4 sites to the spins rota®60 . The periodicity found after the sample
stabilizes the stripes (keep equally spaced) &08. For the case of = 0:608 the theoretical
pitch is30:00. The periodicity found in the simulation was17:5.



Chapter 5

Thermal Quench in Liguid Crystal
Droplets

5.1 Introduction

A typical thermodynamic stable phase is often described by an order parameter that
varies continuously through space, except in singular regions, known as defects, where the
order is not well de ned 18§. In some cases, these topological defects can appear in LC even
when it is in the ground state, for example, con ned in a spherical geometry like a droplet. The
topology in the sphere can not be quite simple since it is not a rule the ground state to assume the
simplest solution189. The features of a defect can affect macroscopic characteristics and the
interplay between topological limitations and energy minimization is crucial to determine the
structures of some systems. Viruses and spherical bacterial surface layers are some examples
of how the environment and minimum energy state affect on each dt®@+]93. Controlling
topological defects can be important for electro-optical material science in polymer-dispersed
LCs [194-19q, since the LC internal order in the droplets can either change from an opaque
or diffracting state to a transparent one. Besides, droplets are interesting because the inner
structure is ordered, and they are small, so bulk and surface are directly competing, making the
droplets more complex and distinctive than continuous liquid crystalline media.

The spherical cavity provides different complicated arrangements according to the
combination of several factors, like the anchoring at the surface, the LC elastic properties,
the droplet size and external in uencel9[/]. Among these considerations, the kind of surface
anchoring should be used to classify the LC drop. The director @teinds to follow the easy
axis imposed in the sphere boundaries. The alignment at the surface can be in the radial line,
perpendicular to the surface, called homeotropic anchoring. In this case, con gurations like
sea hedgehog, a twisted version of this one, beyond the axial drop (when bend distortions are
favorable) can usually be found as stable states in nematic drop&ds The Gauss theorem
requires that this kind of anchoring generates structures with total topological charge in the bulk

79
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equals to+1. On the other side, the surface can be tangentially aligned, called planar or parallel
anchoring. The bipolar drop, the twisted bipolar or the concentric arrangement (also formed
when bend distortion are favorable) are possible equilibrium con gurations for this case. A
tangential anchoring may generate topological defects at the surface and the total topological
charge on the surface, required by the Poincaré-Hopf theorer,[588 19§.

After new applications of nematic and cholesteric droplets in functional, responsive
materials boost researches in this sub eld of physics, several works were developed to bet-
ter understand physical properties, formations of topological defects in ground states and the
droplet responses to temperature, external stimuli and chemical reactions. The complex behav-
iors that appear in LC droplets are resulting from intrinsic topology in the space curvature in
a sphere. Although little explored, effects of induced interaction between the droplets and the
LCs con ned in more complex geometries may be worth studying in order to nd new features.

In 1931, Dirac theoretically proved that the existence of magnetic monopoles would
be consistent according to the symmetry in Maxwell equati@8§)[ but they are really hard
to be detected in experiments and it remains an open research problem. Notwithstanding, other
elds of physics, like the LCs, have observed interesting similarities in topological charges
with the Dirac monopole (hypothetical magnetic charge). Fascinatingly, monopole defects have
demonstrated stability in layered structure like CLC droplets if the pitch is considerably smaller
than the droplet radiu2p0 201].

Boundary conditions often break the symmetry of an ideal CLC structure. For spher-
ical environments like droplets, the geometric frustration can generate equilibrium states with
stable topological defects. The resulting structure depends on several parameters of the sys-
tem, like size of the droplet radiu®), kind of surface anchoring, pitch lengtp)( external
in uences, among other aspects, as well. To measure the intensity of helix rotation inside the
droplet, it is convenient to de ne a parameter relating the droplet size and the cholesteric pitch.
The de nition N = 4Re p counts how many times the helix completes half pitch, or the number
of -turns along the droplet diameter, and it does not have to assume integer values. In par-
ticular, after thermal quench in droplets with homeotropic anchoring, single disclination loops
are expected iN 3, but many metastable states and complex linked knots can emerge if the
chiral regime is driven bN 4 [10,202. On the other hand, low chirality regimeN (< 4) in
a planar surface anchoring may produce the twisted bipolar con guration, while high chirality
(N 4) leads to spiral arrangemenf0f3.

Although some simulations have reproduced thermal quenches in cholesteric droplets,
they have accomplished the quenching process by the continuum mean eld LdG free energy ap-
proach. The procedure to carry out the relaxation in this model consists of moving the directors
according to the Frank free energy minimization. In 2012; &eal. used the LdG numerical
model to nd equilibrium states in droplets with parallel alignment at the surface, by changing
the cholesteric pitch, starting the simulations in structures organized by Ang&ie Btill
considering the planar alignment, in 2016, Zhedwal. reproduced transitions between stable
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structures for intermediate cholesteric pitches using the LdG model by considering random di-
rector eld as initial condition 11]. On the other hand, the LdG relaxation process in cholesteric
droplets with homeotropic surface alignment and random initial orientation showed a variety of
metastable con gurations for B 4 pitch regime R02. There is a lack of simulations in
frustrated cholesteric droplets, with homeotropic or planar surface anchoring, successfully de-
scribing stable and metastable states considering different pitch regimes and starting the relax-
ation process by random organizations. Besides, simulations really involving the temperature
in relaxation procedures have not been reported yet. The understanding of state stability and its
relation to system parameters is still a challenging and open task. To the best of our knowledge,
this is the rst report of thermal quench simulations by the Monte Carlo method using the MH
algorithm, which includes the temperature as a real parameter in the system. In the context of
such scarce simulation state of the art, we performed simulations of thermal quench in CLC
droplets to investigate the equilibrium states to compare the Monte Carlo (MC) method with
other commonly available tools for studying these systems. The simulations are based on spins
in a discretized lattice interacting with the nearest neighbors by means of the chiral pairwise
additive potential proposed by LuckhurSt.[We report common experimental macrostructures

for both homeotropic and planar degenerate anchoring, as well as states featured by new linked
knots, not previously found in the literature. In this chapter we describe the expected stable
states for homeotropic and planar surface alignment, the aspects of simulations, followed by
the results and discussions.

5.2 Basic properties, kinds of anchoring and stable states

Generally, nematic supramolecular droplets have the order parameter approximately
constant in the bulk, but they suffer a considerable change near the surface and defect lines, due
to the sharply increment on the elastic ene@yF-207. As previously mentioned, the structure
of the droplet depends on factors like the competition between elasticity, kind of anchoring and
the surface tensions. In general, an equilibrium state is de ned by the minimum of the free
energy functional given by

1 1
F=R+F= fdv+ fd; (5.1)
%

whereV is the droplet's volumef, is the bulk free energy density, is the area of the surface,
and fs is the surface free energy per unit ar@@§. However, it is relatively dif cult to nd
solutions for this minimization problem, because the bulk and surface energies are often com-
parable, andfs depends on the orientation of directors at the surface, for example. Terms of
surface, usually omitted in the minimization process, do not change considerably the stability
of the supramolecular architectur20[].*

1As a rst approach/fs is considered to be a constant.
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LC droplets are practically spherical in real cases. The structure inside the droplet
depends strongly on its size. In the small size regiRe, I, KeW,°, wherel,, is the
characteristic anchoring lengtidy; is the anchoring energy arid is the elastic constant for
one-constant approach, the bulk energy outweigh the surface terms, and no variations on the
director pro le happen. On the contrary, the directors in large dropRRts ( l,) respect the
imposition required by the surface anchoring, making a distorted eld with topological defects
taking place inside the droplet. Droplets where the surface terms are domihanK(W,)
contain topologically stable defects. In some cases, they are unagyahonopoles analogues
of Dirac monopole.

Typically, W, 10 ¢ 10 %0 Jm 2 for the liquid crystalline cyanobiphenyls-glycerin
[209], which leads to an extrapolation lendthof the order of micrometers§ 10 I N. The
large regime oR provides defects in equilibrium. So, the directors make a polar anglih
the radial directiom®normal to the surface. If this angle is xed, there is no need to solve the
minimization of energy to nd topological properties inside the droplet. This is possible due to
the differential geometry and it can be better understood by the Gauss and Poincaré theorems,
which establish connections to the topological charge. Signi cantly, the conservation of the
topological charge guarantees the defect stability, so the conservation laws dictate the defect
creation, annihilation or mutual transformatictOf.

Lets consider the normal molecular anchoring over the interface, where the directors
are perpendicular to the surface. Although it is a simple case of surface alignment, the director
eld in the bulk can adopt complex con gurations such as equatorial disclination for low chi-
rality [209, twisted disclination around the sphei®l[}], bulk defects like Skyrmions2[11],
or even hidden constellations of monovalent and polyvalent singular point de?d&@s Pn
the other hand, the planar anchoring requires a special attention concerning the defects that the
intrinsic topology of the system generates. There are different ways the directors can be aligned
at the surface. The rst to be mentioned is the bipolar anchoring. In this case, the easy axis at
the surface is xed and, in each point of the surface, it points towards the pole of the respec-
tive hemisphere where the director is located. So, the director eld forms two diametrically
opposite boojums and the anchoring is similar to the Earth's magnetic eld. The second case
is the toroidal boundary conditions. This case is similar to the bipolar boundaries, but here the
directors are, beyond be tangential of the surface, perpendicular to the axis which connects the
two opposite boojums at the surface. So, the alignment at the surface is similar to the concentric
rings around the diameter line of the droplet. Although once repo?t&d,[this kind of anchor-
ing is not so common because the bend elastic constant is very often larger than splay constant
in LCs. The third and most common parallel anchoring at the surface is the planar degenerated
anchoring $6,68,203 214,215. In this case, the directors are free to rotate in the tangent plane
to the surface. Consequently, the planar degenerate alignment is a result that minimizes the
bulk energy driven by the competition between elastic anisotropy, thermal energy, chirality and
anchoring energy at the surface.
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Nematics

For nematic droplets under homeotropic anchoring, the radial alignment is the pre-
ferred con guration depending on the splay and bend distortions. Variations like the twisted
radial con guration can be found fdf33*Ky1 < 6, since it reduces the bulk energy near the
point defect. It is important to mention that the previous states have stability driven by the
relation between the elastic constants. Still for homeotropic anchoring, if bend distortions are
favorable over the splay ones, a structure with a defect ring located near the surface can be seen.
This is the axial structure. In addition, there is a critical droplet radius in which the surface
anchoring is no longer kept, making a transition possible from the radial to axial con guration.

In the case of a tangential anchoring, the bipolar structure (BS) experiments splay
distortions near the boojums at the surface and bend distortions in the bulk. If the twist distortion
appears in the bulk, the twisted bipolar distortion is formed given an speci c relation between
the elastic constants. Besides, it is possible to nd the concentric structure according to the
elastic constants ratio. The concentric drop is an unstable state due to the nonexistence of
defect line of integer strength in nemati&sy.

Cholesterics

Different from nematics, that form singular defect lines, the disclinations in cholester-
ics are of type , and , but this latter class is unstable. The chirality in LC droplets breaks
the symmetry of the nematic orientation in the bulk. As a result, more complex con gurations
may appear. Since the helix rotates inside the droplet, the director eld should be driven by the
twisting power and boundary conditions.

Droplets with homeotropic anchoring can present several different metastable states
with disclination lines knotted in the bulkkQ2. This bulk disclinations can also be under-
stood as an intermediate state between the homogeneous nematic and the non-trivial blue phase
structures under complex con nemeitlg 217). Considering the homeotropic anchoring and
high values ofgR, the Frank-Pryce model prevails since the anchoring energy of the surface
does not exert a force to unpack the cholesteric lay20§|] According to the literature, if
gR< 5(N . 3:3), the probable structure is the axial con guration with a twist between the
layers [L89,209. For smaller values of|R a ring defect can be observed around the surface,
and even smaller values furnish the radial structure in a very similar way to the nematic con g-
uration 09.

For cholesteric droplets with planar anchoring, at least three kinds of structures can be
found in experiments depending on the radius to pitch ratip. The molecular organization
can easily become complex when chirality is competing with other parameters. Understanding
the behavior of supramolecular architecture is a dif cult task that can help applications like
color displays, biosensors, cross-communication between droplets and generation of 3D omni-
directional microlasersg| 218-22(. The low chirality regime N < 2) in tangential anchor-
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ing generates the BR07,209, similar to the nematic case. If the chirality parameter obeys
2 < N < 3, the twisted bipolar structure (TBS) appears and the sample exhibits the twisted
bipolar transmission pattern. When this cylindrical symmetric con guration is observed with
its axis perpendicular to the light and parallel to one polarizer, an elliptical ring pattern forms
in the eld of view. As the helix in the bulk is rotating in the perpendicular plane to the light
ray, the chirality is revealed by dark regions across the bulk appearing due to the birefringence
of LC. If the parameteN keeps increasing, the boojums become nonantipodal and are located
in the same droplet hemisphere. This is an intermediate state between the TBS and the high
chirality regime, also found in experiments and theory, known as bent-TBS (bTBS). For the
regime of high chirality p < Ror N > 4), experiments exhibit droplets arranged in the spiral
pattern, while the perpendicular plane manifests a concentric ring pattern. The Frank-Pryce
model describes this concentric ring pattern as'a defect line going from the surface to the
center of the droplet, which does not allow the rings to connect completely. Xu and Crooker
explained that the Frank-Pryce structure could be better understood if the escaped model (de-
scribing the defect line) were implemented as a non-singular disclination2bi#. [On the
other side, Seet al. has recently proposed that the Frank-Pryce structure is the radial spherical
structure (RSS) with no singular bulk defects and with the director escaping in two separate
regions corresponding to twd! lines winding around itself nishing in two very closed boo-
jums in the same hemisphere at the surf&@]]. In their simulations with the numerical LdG
model in planar degenerate cholesteric droplets, they found the structure stability in function
of the pitch R04. For such, Ansatze were used to generate initial conditions and the elas-
tic anisotropy was not considered. The equilibrium con gurations RSS, diametrical spherical
structure (DSS) and planar bipolar structure (PBS), previously known in the literature, were
reported. The theoretical predictions show the DSS as one of the solutions for a possible struc-
ture, with cylindrical symmetry and two defect lines terminating on the surface witls twa
defects. In agreement to the stability diagram of the structures, the experiments show that for
large pitches the TBS is the most stable state, due to the helix unwinding, while in high chirality
regimes the most observed equilibrium state is the RSS. Additionally, two new proposed struc-
tures with appropriate values of N, Lyre structure (LS) and Yeti structure (YS), were found to
be highly metastable. Due to the high energetic difference of the structures for large values of
N, itis not expected that thermal uctuations in the director could induce transition between the
con gurations. For all these structures, the gap in the energy can achieve an order of magnitude
of 10°kgT. Small values oN (  2) always present the TBS as the stable state, whil&for 3
the RSS is the most stable compared to all the other structuredl Eat, the highest energetic
structure is the YS, followed by LS, though such structures do not have singular defect because
the cholesteric layers are highly deformed along the bulk. Furthermore, the internal energy of
PBS increases withNl, becoming the most unfavorable con guration fér> 7.

Uncommon structures and thermodynamic phase transitions also happen since the
droplet is strongly in uenced by parameters, such as temperature, external elds, elastic con-
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stant and chirality, but the relation between them and these controlling parameters are not well
known.

5.3 Aspects of simulations

Classi cation of points

In order to accomplish the simulations, it is necessary to represent the system in the
discretized space, choosing the Cartesian coordinates. For such, let us suppose the droplet has
a radius occupyin@R ( Re ) sites in the discretized systeirf a point located by the vector
® = x '+ y ['+ z K has its modulug®] R°(= R + Rey),? this point is considered to be
inside the sphere. To represent the spherical shell where the spins at the surface are, an interval
of points betweerR’ andR + 2 was delimited to avoid risks of some point to be interacting
with points outside the sphere. Finally, points in which are distant in a value greater than
R + 2 are considered out of the sphere for the simulations. So, an sphere with Radmusst
have a diameter d*!R + 2° eligible points belonging to the sphere and, consequently, must
be contained in a cube with side lendgtfR + 2°. Given this con guration, there is no need
to access points outside the sphtr&o know if the points are from the bulk, the following
analyses were made. Points located between the center of the sphd®@aaadtlassi ed as
point of the bulk, or points of the type p{ = 1).> Points belonging betweeR® andR + 2
are points at the surface, pt = 3. Points farther thaiR + 2 are outside the sphere, and they
are considered gst = 0. After these points are characterized, the lattice is scanned again. If
a point of type 1 has one or more neighbors of type 3, it is a point beside the surface and it is
classi ed as a point of type 2.

Lattice size and kinds of interaction

As previously mentioned, the morphological behavior of the sample in the bulk is
sensitive to there p ratio. Determining the lattice size is not a simple task, because it depends
on the materiale. g, if the LC is a nematic or cholesteric, beyond other factors acting in the
system. If the droplet radius is very small, the surface can no longer perform its function since
the extrapolation length becomes the same order of magnitude as the radius, thus representing
an extremely weak anchoring. In case the material is a cholesteric, it is necessary to consider
a minimum quantity of sites to appropriately typify the intrinsic helix in the phase. As the
pairwise potential involves energetic parameters competitions, it is convenient to consider the

2As the error to represent the sphere in the Cagiesian system tends tcbzero onlR@wbes to in nity, the
radius in some points on the boundaries can variate i, and in other points " 3.

3Rext is @ small value to correct the sphericity near regions coinciding with thexaxesndz.

4During the simulation, it is not ef cient to calculate the distance between a raf ed point in the bulk and the
center of the sphere several times to know if such point belongs to the bulk. It is convenient to classify the lattice
points by kinds. So, the distance between each point and the center of the sphere is calculated just once to know
the type of the point.

5The center of the droplet is located in the positiéh+ 2R + 2 R + 2°in the lattice.
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values of the chirality parameter in comparison to the other terms of nematic phase and the
surface interaction energy. As an example, suppose the chiral elastic one-constant approach
case. The terms that do not vanish in E6f) are

ik = lebjk°+ Pllcjkosgribjko: (5.2)

Considering that the cholesteric is a locally quasi-nematic, it is useful to propoge fkaj |,
where represents the interaction energy between the directors in the nematic phase. Supposing
1« 2=0:500 the Luckhurst model shows that

2 .32.5

=3 =12: (53)

p = K =
Such value of generates a reduced pitgh near 38 sites. ThuR around 40 sites can
be a suggestive value for the lattice in the simulations, since unddirtlrekgTej j 101!
temperature regime, each site represents arouh@d ! m, which designates an experimental
droplet with diameter between 1 and 16n.

Interaction with surface

The spins interactions of type 1-1, 1-2 and 2-2 normally occur via Luckhurst potential,
given by the Eq.Z.65. On the other hand, spins of type 2 that have at least one or more type
3 neighbors have 2-3 interactions given by the LL elastic isotropic potential, where the main
factor determining the interaction is the angle between the spin and the surface ea®yaxis
together with its anchoring energy. Therefore,

jisurf = JsP2'® @y (5.4)

Homeotropic and planar degenerate anchoring

To impose homeotropic molecular alignment at the interface between the bulk and
the outside matrix is quite simple, one just needs to align the directors at the surface in the
radial direction of the sphere. In other words, the easy axis is pointed towards the unit vector
connecting the center of the droplet and the point at the surface.

The planar degenerate anchoring setup is not quite simple, because the surface needs
to be dynamic and adjusted until the volume reaches a stable equilibrium con guration. So, the
easy axis moves just in the tangential plane to the sphere containing the point at the surface.
The con guration of spins at the surface with planar anchoring is made as follows. Firstly,
the spins of type 3 are set in the radial direction, forming a unit ve&tolJsing spherical
coordinates, each point in the space can be represented with three coordinates: thHg tadius
polar angle and the azimuthal angle For each point where the angle 0or 180, we take
the cross product betwe@and thez axis inK direction, in order to obtain a vect@®= ® K
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perpendicular to both vectors. If it is carried out for all spins at the surface with exception to
the poles, the surface will have a toroidal anchoring, since the spins are tangent to the surface
and do not possess component& irection® In principle, the droplet surface alignment starts
from the bipolar alignment condition. To obtain such surface con guration, itis required to take
the cross produd® = '® @«j® & also perpendicular to both vectaBand®’ Considering
®= uy; Uy; Uz°, the unit vector in the directio is given by
1 h i
® = g Uxlz+ Uyt [* Uz +ug K (5.5)
UZUZ + UZUZ + UZ + U 2

Therefore, given a unit vector in the radial direction in a certain point of the surface, the direc-
tion of bipolar, tangential alignment at the surface is giver@gbin Eq. 6.5), as illustrated in

Fig. (6.1). According to the movements of type 2 spins in the bulk, the type 3 neighbors must
follow the volume progress, forming the degeneration at the surface. Once the surface must
sustain the planar anchoring, the projection of type 2 spin in thef@yskould be passed to the
type 3 spin@® at the surface. Supposing thais the angle betweef§y and the radial direction

R the angle = *2 may be the angle between the surface tangential plan@andsing

the de nitions of 3D rotation matrix, it is possible to rota@g and project it on the tangential
plane to the surface, nding a vector which is going to update the spin at the surfﬁe to
making @ ! @g Being@&perpendicular to both the spin in the buixand the radial vectoR,
itmeans@=® R The matri>!<M1e °which rotates a vector by an anglearound the axis

5The planar anchoring for the spins at the poles are separetly imposed, just choosing a director planar aligned
at the surface.
"The vectors®and® form the axis of the tangential plane at the surface in such point.

Fig. 5.1: lllustration of planar anchoring at the surface of sphere. The nal result for the vector parallel to the
surface is obtained b = !® &+ ® ®], where®is a unit vector parallel to the radial directid® and
®=® Kk
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é= x"+ y['+ zR is given by

o0 * x?11 cos © xy'l cos ° zsin xZ1 cos °+ysin a
! . . ®
Mi& ©°=Ixy'l cos °+ zsin cos +y?1 cos © yz1 cos ° xsin

«&Z1 cos °© ysin  yz!tl cos °+ xsin cos +Z7%1 cos ° _

where the angle is de ned as

® R
imiiR] 2

= arccos

So, given an updated vector in the bak the updated vector in the surface can be written as

‘ 00 Moz |V|02 3 ;boa

0 ! 1

@ = Mle o @ = :MlO Mll M12 nybo: (56)
«M20 M2y M22_|«nzbo_|

Fig. (5.2 illustrates how the director projection is at the surface. This updating process is
performed every time the type 2 spin is modi ed in the bulk.

Side View TopView

F'?'I OR

Tangential plane S

3-

OX: nb Before After
(a) (b)

Fig. 5.2: Process of spins update at the surface. (a) Side view of the system showing téevhgi® the spim

rotates an angle. The vectorRis the radial direction anf is the director at the surface, parallel to the tangential
plane of the sphere. (b) Schematization of top view showing how the spins are aligned before the surface update,
and how®, ! @ after the projection.

Thermal quench in droplets
The LC droplets are made by using a glass capillary-based micro uidic device, in-

serting them in a surfactants matrix that interacts with the droplet boundaries, generating an
anchoring at the interface according to the matrix material. After the droplets are formed, the
system may reach a resultant equilibrium con guration due to all the energetic competitions.
These stable states can be reached by photoincidence, electric eld application, or thermal op-
erations on the droplet. In special, heating the LC in the nematic phase above a temperature
higher than the melting point to isotropic phase cleans any kind of order memory which the
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droplet had beforelf0]. As the system has a topological richness, the thermal quench allows
several metastable states. It happens due to the thermal agitation providing energy gaps to the
system leaping energetic barriers around the local minima. According to LL model, the reduced
Isotropic-nematic phase transition temperature is 1.128][ This is the referencEF'{N for sim-

ulations with the chiral potential proposed by Luckhurst. The rst attempt in reproducing the
experiments is supposing that initially, the system temperature in the simulation is xed and
the director con guration in the lattice is random. On average, the order parameter is zero in
the isotropic phase. Following the MH algorithitg], the MC method is able to eliminate the
defects along the bulk due to the intrinsic thermal agitation in the simulations. The BW method
ef caciously introduce the thermal agitation in the systeimq. Indeed, when the chirality is

not present, the system relaxation occurs more ef ciently compared to chiral systems that may
have local helix rotating in different directions generating disclination lines. Consequently, if
the LC has high chirality and the thermal quench is carried out very fast, these disclination lines
can form complex links and knots which are very dif cult to disrupt. This complication occurs
because the disclination lines stabilizes in a locally trapped 28t. [So, it can be expected

that keeping the reduced temperatiigexed in the simulations should work only for nematics

and low twisting power cholestericdl(< 4). The reason is that keepidg xed makes the
director maximum rotation anglemax to tend to a small xed valué. Small values of max

are not enough to switch the whole structure and escape from undesirable metastable states. If
the system starts from random states with a temperature quite below the considered transition
temperature, then the complex con gurations reached by the directors could be hardly undone
due to the complicated spherical topology. As LC droplets with low chirality easily relax in
low temperature regimes, it is reasonable to think that the higher the chirality is, the higher
the temperature needs to be for the system to get rid of bulk defects energetically unfavorable.
Only then, after the system is kept in a certain temperature for several MC cycles, its change
can be convenient. We selectagosteriorj an initial temperature nedf = 0:700 even for

chiral droplets withN 2. In this temperature, theynay oOf directors tends to be nedb .
Choosing an ideal step size of temperature is crucial, because the sphere volume increases with
the cube ofR, so short steps can considerably enhance the simulation time. In order to choose
the step magnitude, it is convenient to observe some experimental facts. If the droplets are too
large, the relaxation can take hours after a thermal quench is done due to the increment in the
combinations of accessible states in the system. A solution for such problem is performing a
very slow thermal quench, with very short steps in the temperature, or to accomplish several
thermal quenches in an intermediate speed. Looking for the range in the temperature in which
the nal pointisT; = 0:100, instead of doinglT 10 2, itis plausible to considedT = 0:100.

As mentioned before, whether the system is in a temperature0riZ20 in the high chirality
regime, it is important to consider that the droplet will form a linked and knotted director eld,

8Such maximum rotation angle is updated in each cycle. Each temperature has a value inyiehds to
keep the acceptance rate of BW method around 0.5 If 0, max! O, whileif Tr ! TV, S0 max! <2
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and it remains because of the insuf cient thermal agitation needed to relig\a this casea
posteriorihas been selected that, after the system realghed:400, an analyses is done in the
directors. If the structure has not got rid of the undesirable disclinations, the system temperature
Is increased tdr = 0:7000r around and a new thermal quench is performed. It makes that the
thermal agitation in the system increases to try to eliminate the defects which appear through
the bulk. This procedure is done as many times as necessary, until the system has eliminated the
defect lines, reaching an energetically most favorable structure. If the structure appropriately
got rid of the defects, the system goedto Considering that the thermal quench process was
carried out just once, the sample should have relaxed in at least 7 different temperatures. For
each temperature, 200/ Cs are performed for the interaction of directors. No type of transient

is considered in order to obtain the director eld evolution in the lattice and to observe how the
defects behave in the bulk. The order param8terevaluated according to Eq.83), taking
averages eachMCs. The Miiller matrix is taken each KMCs, calculated over an average

of 5 k cycles consideringg = 1:50, ne = 1:66, an incident light with Wavelengtho = 545nm

and layers of 0.20m.

5.4 Results and discussions

In this section, we show the different organizations of droplets by performing thermal
guenches under several combinations of elastic constants, chirality and anchoring energy. The
elastic one-constant approach is given wkgn = Ky, = Ksz3 = K, but real elastic constants
in common LCs respect the inequalifp, < K1 < Kzz. When considering the complexity
of chiral LL potential, we simpli ed both homeotropic and planar degenerate anchoring for
isotropic case using the chiral LL potential. Also, for both kinds of anchoring, we used the
elastic anisotropic approach using the Luckhurst potential with chirality.

Primarily, we describe the low chirality regime and then increase the number of ro-
tations in the cholesteric helix. Before we mention the results, it is convenient to rewrite the
cholesteric parameter in terms ofN. By using the de nition ofN = 4R «p and Eq. 2.69 to
substitute , according to Eq.4.70),

9 K22N

= X 5.7
2R K11 3Kz Kag? S

We investigated the thermal quench in strong and weak homeotropic droplets for different
pitches with elastic one-constant approach andktheK,, = 1:20 andK3s3z* Koo = 1:60 elastic
constant ratios, similar to CCN-37 L@21,222. Due to the lack of experiments in droplets

with weak planar anchoring, we investigated only strong anchoring energy cases for elastic
one-constant approach and some different cases of elastic anisotropy, also for different chirality

9The known structures in the literature have defect lines near the surface, which are eliminated in the central
part of the droplet.
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levels. All the droplets are set to hak®e = 40 sites.

N =0.00

In order to make a complete study of thermal quench, we start by discussing the non-
chiral caseN = 0 in the simulations, which implies = 0. The potential simply reduces
to the LL model. Besides, we set the strong surface anchoring enerdty=sn1:00, initial
temperaturel; = 0:700, nal temperatureTs = 0:100 and steps ofiT = 0:100. For each
temperature, we run 20KMC steps. AsI; is smaller than the transition temperature, there is
a trend of alignment which favors the nematic phase. In a few cycles, compared to the whole
range of simulations, the expected nematic structure takes place showing the known patterns in
the literature for the two different kinds of anchoring. In Fig3 we show results for elastic
one-constant approach in strong (a) homeotropic and (b) planar anchoring, bth at100.
The directors are colored according to the order paran&teo regions in blue scale are near
defects where the spins suffer abrupt changing in the direction. In a transparent blue sphere
representing the LC droplet, we plot red isosurface of order parar8et€). 74 to observe how
the defects are arranged in the biflkin case of Fig5.3-(a), the hedgehog pattern appears in
the homeotropic anchoring, since the surface energy overlaps the bulk energy. So, the directors
follow the radial eld towards the center of the droplet. As the method used in the simulations
is stochastic, it is dif cult to exactly obtain a point defect located in the middle of the lattice.
Instead, we observe a short length ring defect oscillating in the center of the droplet. As the ring
can be considered a regular circle with radius near 2 sites, its scaled engtraround4 .

10An isosurface shows the resulting structure where a speci ¢ parameter assumes a certain value.

(a) Homeotropic anchoring. (b) Planar degenerate anchoring.

Fig. 5.3: Simulations for one-constant approach withe 0 (nematic sample) in (a) strong homeotropic anchoring,

and (b) strong planar degenerate anchoring. In both céges0:100. (a) The directors align radially and a small

ring defects is formed in the center of the droplet, forming the hedgehog pattern. Their colors are scaled by the
value of order parameter. The red ring is the order parameter isosurfacg widkir4. On the right hand side, the C

Muller matrix represents the circular polarized light passing through the droplet while the L is the linear polarized
light. (b) As expected by the Poincaré-Hopf theorem, the BS is formed, since two boojums with topological charge
s=+1are localized diametrically opposed. Near the boojums, the sample suffers an accentuated splay distortion.
Again, the red isosurfaces are the region in which the order para®ietemaller than 0.74.
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Even setting weak anchorings = 0:25, the elastic isotropic case presents the same behavior
for both kinds of surface alignment. Also, simulations for CCN-37 show the same results
for both strong and weak homeotropic anchoring, and the strong planar anchoring case. The
Mdaller matrix results in Fig5.3-(a) show regular circles of minimum intensity for circular (C)
polarized light. For linear (L) polarized light, an alternating pattern of dark and bright brushes
appear in the sample, similar to experime2®323(0. As the directors are radially aligned and

the polarizer is perpendicular to the analyzer, the brushes maximum and minimum intensities
oscillate eac5 . When the anchoring is planar, Fig3-(b), the one constant approach shows

the formation of BS with antipodal boojums appearing in the droplet surface, as expected by
the Poincaré-Hopf theorem. The boojums have topological ctarge 1, and are located by

the blue arrows. The directors in the bulk follow the imaginary lines similar to electric eld
lines created by two opposite charges. The bend distortion propagates near the surface while
the splay distortion surrounds the defects. The resulting structure is cylindrically symmetric
around the axis connecting the boojums and shows elliptical rings in the Miller textures, similar
to experimental result2p7,229-232]. These elliptical dark brush rings are formed due to the
total optical retardation effect. According to EQ.14), the transmittance, or light intensity, is
proportional tosi? ~ Le ° with

L = ndl; (5.8)
wherel is the axis parallel to the light propagatiad2Bp]. So, dark regions appear for
L . :
— = n1 with minteger. (5.9)
The simulations for CCN-37 also show the same results in the planar anchoring.

N =1.00
Considering that the system is chiral in such a way Mat 1:00, Eq. 6.7) may return

different values of depending on the elastic constahtsSettingR = 40, the chiral therm
in the potential for elastic one-constant approach may pe= 0:118 while for CCN-37,

aes = 0:104 Fig. 5.4 shows the strong homeotropic anchoring with= 1:00 for (a) the one
constant approach and (b) the CCN-37 LC. The isotropic elastic case is shown h4ig)
and CCN-37 in Fig5.4-(b). AsN = 1:00is still a low chirality regime, the evolution from
the initial random state i, = 0:700to the nal state inT; = 0:1000ccurs reasonably fast, in
the rst 100 k cycles. Equally to the nematic cage € 0), just one ramp in the temperature
Is enough to observe the bulk reaching the stable structure with ring defect oscillating in the
bulk. Here, the hedgehog pattern also takes place for both samples, but the nal structure in

HAccording to Ref. §], the anisotropy in the pairwise additive potential should not in uence the theoretical
pitch, once does not depend on the elastic constants in the procedure to obta &3). (
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Fig. 5.4: Droplets with low chiralityN = 1:00, in moderate homeotropic anchoridg= 1:00for (a) one-constant
approach and (b) CCN-37. The ring defect appears in both cases, however in (a) it is dislocated from the center
with scaled lengtfC ' 5 , as it can be seen in theaxis direction. (b) On the other hand, the CCN-37 keeps

the ring centered forming the hedgehog structure, with scaled length slightly smaller, approximately e4uals to
The green, blue and yellow isosurfaces in the top are related to the paranietn%randn%, respectively, equal to

0:90.

the isotropic elastic case is slightly distorted, dislocating the ring defect from the center to near
the surface, as shown in Fi§.4-(a). Isosurfaces of parameters nZ andnZ corresponding to

0.90 and represented by the green, blue and yellow, respectively, reveal this distortion. They
are met in the center of the ring, but just one component has the isosurface going into the red
ring defect. This dislocation breaks the cylindrical symmetry of the structure as the chirality
starts emerging in the bulk, as it can also be seen in the Muller textures &.&i@). On the

other hand, the anisotropy shows no difference compared to the achiral case and the ring holds
centered in the bulk, as shown in Fig4-(b). In this case, the square of director components
shows isosurfaces also meeting in the center. Here, we notice the Luckhurst potential presents
a difference on the ring position compared to the chiral isotropic potential. The bulk “feels”
some resistance when changing the defect position since the surface keeps imposing its strong
anchoring on the boundaries of the droplet.

We performed simulations for weak anchoring to observe if the ring defect in the bulk
remains the same as in the strong anchoring case. Different from the strong anchoring, in
both cases the defect becomes larger and moves to the surface, as illustrate®if Fige
isosurface for the order parameter reveals the regions where the directors abruptly change. As
shown by the director components isosurfaces, when surrounding the ring defect we observe the
directors practically changing their direction 89 in some regions. It explains the reason why
in some points around the defect line the isosurfaces are one beside the other, just separated by
the order parameter isosurface. In considering the ring as a regular circle in the rst approach,
the defect line length can be estimated as the base circumference of a cone where the opening
angle is given by «2. Here, is the angle formed between the two points in which the defect
line crosses the sliced plane and the center of the droplet. So, the scaled length is approximately
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Fig. 5.5: Chiral samples in low chirality regime witN = 1:00 in a droplet with weak homeotropic anchoring

(Js = 0:25). Also, both samples are equilibratedTp = 0:100 and run 200kMCs. The top inset shows the

components and the order parameter isosurfaces. (@) The elastic isotropic case presents an opening angle of
= 1400 , while (b) the CCN-37 opens the ring in a smaller angke 1011 due to the presence of anisotropy

in the potential. The Miller matrix textures for circular polarized light (C) and linear polarized light (L) are

represented in the bottom. The estimated scaled len@th is 5:90R for isotropic case an@q,_;; = 4:85R
for CCN-37.
given by

C =2 R sin > X (5.10)

The estimative for the scaled length in the elastic isotropic case witil400 andR = 40
is C, = 5:90R . For the CCN-37 sample = 1011 , which leads taC\ 3, = 4:85R . As
the ring length in the strong anchoring keeps stable in the center of the droplet and its length
Is smaller than isotropic elastic case for weak homeotropic anchoring, we can observe that
anisotropy imposes a certain resistance on acting over the ring defect movement.

The thermal quench results in the CCN-37 droplet with strong planar anchoring, where
Js = 2:00, are shown in Fig5.6. Both the isotropic and the CCN-37 samples form the TBS
pattern. likewise the achiral case, two point defects are formed diametrically opposed in the
sphere. Fig5.6-(a) shows the directors in thez slice in the middle of the droplet, and the
blue arrows indicate where the boojums are located. Contrary to the achiral case, the optical
retardation effect shown in Fig8.6-(b) and (c) forms at elliptic rings with the longer axis
coinciding with the axis direction connecting the boojums. This difference happens because the
helix rotatesl80 in the perpendicular direction to the droplet symmetry axis. Elliptical ring in
Muller matrix may also appear for both circular (C) and linear (L) light polarization, as shown
in Figs.5.6-(b) and (c). The reason for such pattern is that the directors near the surface in
direction differ90 from directors in the middle of the droplet, as shown in FBdx(a). The
isosurfaces of?, n§ andn2 equal0:90, in green, blue and yellow color, respectively, shown
in Fig. 5.6-(d) help on visualizing the director rotation near the surface. In this case, the green
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Fig. 5.6: Droplet in low chirality regime witiN = 1.00, assuming elastic constants of CCN-37, conditioned upon
strong planar anchorind{ = 2:00). The reduced temperaturelis = 0:100with 200k cycles. (a) The equilibrium

con guration is the TBS, with two boojums indicated by the blue arrows. (b)—(c) Muller matrix textures for circular
(C) and linear (L) polarized light, respectively, forming at elliptical rings. (d) Red isosurfac&-oD:74 show

the boojums while the greeng), blue (i) and yellow (%) ones show isosurfaces of = nZ = nZ = 0:90. One
component connects the boojums while the others form perpendicular circle shape surrounding the surface.

isosurface connects the two boojums, while the two others form perpendicular circles crossing
one another in the boojums.

N =2.00

The third case studied ¥ = 2:00 where the theoretical prediction considers that the
helix may rotate360 along the bulk. Using the same procedures as in the previous case, we
set the initial random condition submitting the droplet to a temperature rampTren0:700
to T+ = 0:100in steps ofdT = 0:100 (in each temperature, the sample runs X00Cs).
Let's rst consider the homeotropic aligned case with anchoring energy gived by 1:00.
Fig. 5.7 summarizes the spins behavior in the bulk forming the equatorial ring defect in an
elastic isotropic sample. According to E§.T), , = 0:236. The formed stable structure has
cylindrical symmetry around axis. Fig.5.7-(a) shows the director con guration in a slice in
the xz plane, the defect line resulting in ti&= 0:74 red isosurface and the resulting Muller
matrix textures. For a better comprehension, isosurfaceg of nf, = n2 = 0:90 are shown
in Fig. 5.7-(b). The green isosurface of and the blue one afif are intertwined around the
equatorial ring defect while the yellow isosurfacergfcrosses in the middle of the ring. In
the strong homeotropic anchoring, the surface forces the spins to assume a radial orientation.
The chirality expels the ring defect to the surface as observeN fer1:00. Since the surface
anchoring energy hinder the cholesteric twisting power, the ring defect has a smaller radius
compared to the droplet one. It is possible to observe inF-ig(c) the ring defect inside the
droplet. The sphere coloration in Fif.7-(c) is given according to the values of, where
minimum values are blue, and high ones are red. In addition,F¥d) clearly shows the
directors radially aligning in the boundaries, and the ring defect line in a bright color due to
low values of order parameter S. The ring defect radius is around 35 sites, so the estimative for
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Fig. 5.7: Isotropic approach of a CLC droplet with = 2:00 and strong homeotropic anchorinds (= 1:00) in

Tr = 0:100 (200 kMCs). (a) The director eld of structure forms an equatorial ring defect (red isosurface of
S= 0:74). (b) Isosurfaces afi (green) and1§ (blue) equal 0.90 show that the components are intertwined around
the ring defect, while? (yellow) crosses the bulk in the middle of the sample. (c) The surface is colored by the
parametenZ, where low values represent are in blue tones and high values are in red tones. (d) Due to the strong
anchoring, the directors are radially aligned at the surface, so the ring radius is smallBr titas near 35 sites,

which generates a scaled length ring defect abdR .

the defect length i€, = 5:50R . Investigations of CCN-37 provide similar results related to
the nal structure. Also, both the one-constant approach and the CCN-37 present the equatorial
ring defect for weak anchoring, where the difference is in the defect size. Considering the
surface has weak anchoring energy, the bulk forces the ring to open even more, overlapping the
impositions done by the alignments at the boundaries. In this case, the ring defect rounds the
droplet at the surface, so the scaled length in the weak anchoring is éoknd

Simulations forN = 2:00in a droplet with strong planar degenerate alignmdaty
2:00) at the surface reveals the TBS if quenching the sample Tiom0:700to Ts = 0:100in
steps ofdT = 0:100, as shown in Fig5.8 for the elastic isotropic sample. A well known con-
guration in the literature is observed when carried out a single thermal quench. Two antipodal
boojums at the surface, highlighted by blue arrows, form a cylindrical symmetric structure that
coincides withz axis (denoted as bipolar axis) as shown in Eigk-(a). By observing the per-
pendicular plane to the bipolar axis, it is possible to notice that the directors almost completing
two turns along the black line direction. The director eld also shows &* disclination line
connecting both the boojums. New maximum and minimum optical retardation points emerge
near the surface thus forming elliptical rings even atter, as shown in Biggb) and (c). In
this case, the central ellipse is smaller thanhe 1:00 case due to the higher chirality in the
system. It happens because more cholesteric layers bend in the bulkzaloegtion. Isosur-
faces ofnZ, nZ andnZ equal to 0.90 are shown in Figs.8-(d) and (e), with the green, blue and
yellow colors, respectively. Although the boojums are in a different axis froni\the 1:00
case, the isosurfaces shape are similar. It makes the isosurfaces connecting the boojums through
the droplet center different. Instead of two regular circle which form isosurfacesyBid)),



5.4 Results and discussions 97

Fig. 5.8: Chiral isotropic elastic sample in low chirality regime with = 2:00 in a droplet with strong planar
anchoring s = 2:00) at Tg = 0:100(200kMCs). (a) The cholesteric layers bend in the bulk forming the TBS,
with two s = +1 diametrically opposed boojums, and & line connecting them along thedirection. (b)-(c)

Muller textures reveal new maximum and minimum points in the transmittance, so decreasing the elliptical rings
size. (d)-(e) Isosurfaces of (green) anahg (blue) show an oscillated elliptical structure, whife(yellow) follows

the *1.

here they become perpendicular ellipses passing through the boojums, as showb i& (€.
but forming an oscillated structure, as shown in Eigk-(e) along thez axis observation. Also,
the TBS pattern is found in simulations for CCN-37 sample.

N =3.00

The N = 3:00 case is quite interesting for CLC droplets having normal molecular
anchoring at the surface. From the previous droplets already mentioned, we observe the ring
defect morphology being modi ed in function of. By changing the anchoring energy and the
number of turns inside the droplet, it was expected that the structure could be different. As an
example, while increasing the chirality level under low valued;dor homeotropically aligned
droplets, the ring changed its central position and size, moving towards the surface, forming
a ring similar to the base of a central cone, and it nally appeared as an equatorial defect.
We performed the simulations following the same setup as the previous droplets. Firstly, we
mention the isotropic elastic case with stronlg € 1:00) and weak s = 0:25) anchoring
energies in the droplets with perpendicular alignment at the surface, shown i&.igrhe
chiralterm . = 0:353in the system begins to in uence the director organization in such away
that the equatorial ring defect is not adopted anymore. The strong anchoring case, illustrated by
a snapshot in Figh.9-(a) reveals a truncated and disorganized loop defect organization in the
sample (red order parameter isosurfac8& ef 0:74), due to the surface orientational imposition
to overcome the radial alignment near the borders. Curiously, when the weak anchoring is
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Fig. 5.9: Simulations of isotropic sample @k = 0:100(200 kMCs) with N = 3:00. (a) Moderate homeotropic
anchoringJs = 1:00 showing the directors forming a metastable state with a single non-uniform loop defect, as
revealed by the red isosurface 8f= 0:74. (b) Different from moderate anchoring, the weak anchoring case
(Js = 0:25) shows that the director eld forms the twisted loop defect around the surface. In this case, the structure
bipolar axis does not match with any Cartesian axis, thus, creating false impression of non-uniform cholesteric
layers separation. The (C) and (L) Miller textures are the results for circular and linear polarized light passing
through the sample, respectively.

considered, the bulk is able to determine the ground state for cholesterics by forming the helix
con guration inside the droplet, as shown in Fi§9-(b). The cholesteric layers, determining
the bipolar axis of the droplet, bend along the bulk because of the spherical geometry, and the
twisted loop defect (red isosurfaces wih= 0:74) takes place at the surface. As the twisted
loop defect is regular spaced, it is possible to conclude that the bipolar axis does not coincide
with any Cartesian axis.

In the anisotropic case, Fi§.10shows the nal structure of both strongs(= 1:00)
and weak {s = 0:25) homeotropic anchoring for CCN-37 chiral droplet wih = 40. Eq. 6.7)
shows that .37 = 0:312 The equilibrium state has abrupt change of the director eld near
the surface, thus forming a bipolar distribution of the cholesteric helix in the bulk. This con gu-
ration is the so-called twisted loop defect since there is a twisted ring defect line (red isosurface
of S= 0:74) encircling the droplet near the surface. In such supramolecular conformation, the
cholesteric layers organize in isocline lines related to the bipolar axis (green line), as shown in
Figs.5.10(a) and (c), for strong and weak anchoring, respectively. The perpendicular plane,
shown in Fig5.10(b), reveals that the the bipolar axis does not perfectly coincide with a Carte-
sian axis, but is regularly distributed in space. Also, the Muller textures con rm the slight
inclination of the structure related to the point of view. It happens because initially, the sample
is randomly oriented and the MC method allows the bulk to visit different states with similar
structures and energy levels, since there is not a bias in the structure inducing the alignment in
a speci c direction. Such structure has no rotational symmetry around the bipolar axis once the
shape of twisted ring is antisymmetric concerning a cut done in any slice passing through the
middle of the droplet. For the weak homeotropic anchoring, the twisted ring reaches the surface,
consequently changing the easy axis orientation where it passes. These points are highlighted
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Fig. 5.10: Simulations of cholesteric CCN-37 dropletTat = 0:100 (200 kMCs) with N = 3:00and Js = 1:00

in the (a)-(b) strong homeotropic anchoring aild= 0:25 in the (c)-(d) weak homeotropic anchoring. The bulk
forms the twisted loop defect near the surface. (a) The directors settle in cholesteric layers forming isoclinal lines
which are perpendicular to the bipolar axis (green line). (b) As the bipolar axis does not match with a Cartesian
axis, the perpendicular plane does not show symmetry along the observation point (it also can be con rmed by
the Miller textures), however the structure is regularly spaced in the bulk and it has cylindrical symmetry along
the bipolar axis. (c)-(d) In the weak anchoring case, the directors overlap the surface alignment, oscillating to the
parallel orientation following the defect line (highlighted by gray arrows). Due to the coincidence between the
bipolar axis and a Cartesian axis, the structure has the cylindrical symmetry along the y direction. The twisted loop
defect is illustrated by the red order parameter isosurfac8sif:74.

in gray arrows indicating the regions where the bulk orientation overlaps the surface easy axis
imposition, as shown in Fig&.10(c) and (d). This trend is in accordance with experimental
results R10. The droplet stabilizes the bipolar axisyraxis, as revealed by the Miller textures
showing a symmetric structure in the plane of view. To obtain the estimative defect line scaled
length for such stable state, it is necessary to know how the defect line varies in space. Given a
curve described by the vect@rit® = x 1to'+ y 1t°[*+ z 1t°K in space, if its parametrization in
function oft is known, it is possible to obtain the lendgth from a pointAto B by

1

B d®

c= 5 & (5.11)

The twisted loop defect is also known as loxodrome cdfv€onsidering the condition that

125 loxodrome is the path created in the surface of a sphere when the path crosses the meridians with a xed
angle.
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z has maximum value whex =y = 0, the loxodrome describing the twisted loop defect
havingM isocline lines in a sphere of radily can be parametrized as

% X 1t@
y 1t0
.§ z 1t°

Rox! 1%*1sinttosiniiM + 19°;
Rox! 1% sinit°cosi'M + 1°°; 0t ; k=12 (5.12)
Riox COStC,

The parametek = 1 describes half of the complete curve, while= 2 refers to the other one.
As the loxodrome is regular, one can integrate over just half length of the curve, since the other
part has the same length. So, for 1, and considering that for integer valuesthe number
of isocline lines isM = N 2, the estimative of complete scaled length of the twisted loop
defect, according to Eq5(11) and 6.12), can be written as
g
C = 2Rox . 1+ 1IN 192 sinPito dt: (5.13)

Therefore, numerical calculations for the integral in Eg18 with N = 3:00 show that in
the strong anchoring case (where the radg 365 ) Cy, = 9:62R , while for the weak
anchoringC ... = 10:54R , sinceRox coincides withR .

Results for parallel surface alignment in isotropic sample curiously present two distinct
nal equilibrium con gurations, depending on the surface anchoring energyJ&orl.00, the
sample reaches the TBS, as shown in Fig4l-(a) and (b). The directors alignment in the
droplet generates a*! disclination line connecting the boojums, and the cholesteric layers
bend in the volume following the eld line as if the boojums were opposite electric charges.
Interestingly, forJs = 2:00, only one boojum appears with a winding numbdr 2 nematic
disclination line, as shown in FigS.11-(c) and (d). It seems an incomplete-bTBS taking place
over the bulk. The splay distortion formed around stre+ 1 boojum has higher energetic cost
for Js = 2:00than for the case afs = 1:00. So, the reason for appearing the incomplete-bTBS
should be that it is easier for the bulk to bend the cholesteric layers, instead of keepifmthe
connecting the two opposite boojums straight. A similar behavior of this structure transition
was found by Zhotet al, showing the bTBS taking place over the bulk after increasing the
surface anchoring energy in cholesteric droplets Wtk 3:5[11]. Contrary to the isotropic
case, by carrying out simulations for exploring the strong planar anchoring case of CCN-37 for
N = 3:00, we just observe the TBS as the stable state structure for both anchoring energies
Js = 1:00and Js = 2:00. This can be veried by Fig5.12 which shows the sample with
Js = 200 at Tr = 0:100 (200 kMCs). The sample holds the TBS even for higher surface
energy cases, and the reason for that should be related to the CCN-37 bend elastic constant.
As in this caseKss is bigger than the isotropic one, the bulk still prefers to keep the boojums
antipodally aligned, instead of bending the cholesteric layers to form the bTBS, which would
cost more energy for the bulk than paying for the penalty for increasing the energy in the surface.
Again, just one thermal quench is enough to nd the two boojums raising in the sample (red
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Fig. 5.11: Chiral isotropic sample foN = 3:00atTg = 0:100(200kMCs). (a) The case fal; = 1:00 shows the

TBS with two opposite boojums, while (b) thle = 2:00, the directors form an incomplete-bTBS, where just one
boojum appear with a nematic disclination line. The (C) and (L) Muller textures are the results for circular and
linear polarized light passing through the sample, respectively.

Fig. 5.12: Chiral CCN-37 withN = 3:00in a droplet with strong planar anchorind (= 2:00) atTg = 0:100(200
kMCs). (a) The TBS pattern is formed by &* line connecting twes = + 1 diametrically opposed boojums (red
isosurfaces of = 0:74). (b)-(c) Isosurfaces af (green) and? (yellow) show an oscillated elliptical structure,
while n§ (blue) follows the *! line in y direction. (d)-(e) Miiller textures show at elliptical ring pattern in the
transmittance like the cases fiir= 1:00 and2:00, differing just near the surface in the axis perpendicular to the
bipolar axis.

isosurfaces o5 = 0:74) with topological charges = +1 antipodally located at the surface,
generating a cylindrical symmetry structure that matches wikis, as shown in Figh.12-(a).

In the rst instance, this structure is similar to the one obtainedMor 2:00. Also, when
observing the textures formed by the circularly and linearly polarized light, in Big&(d)

and (e), respectively, the at elliptical rings of minima in transmittance aspects are very similar
to theN = 2:00 case in the central part of the droplet, but slightly differs near the surface in
the plane perpendicular to the bipolar axis. To clearly outline this difference, it is necessary to
investigate how the director eld is distributed in the sphere. Isosurfaca%,tme andn2 equal

to 0.90 are shown in Figs.12(b) and (c), with the green, blue and yellow colors, respectively.
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The oscillating elliptic shaped isosurfacesmdfandn? are perpendicular and they meet in the
boojums. The blue isosurface representing‘fﬁeomponent links the boojums through the
defect line. However, this isosurface reveals thattheomponent is practically completing two

-turns along the droplet diameter zrdirection. The probable reason for existent discrepancy
in the number of rotation is that the anchoring energy is strong enough to overlap the twisting
power of the bulk, so keeping the supramolecular architecture constrained.

N =4.00

Finally, we report the distinguished behaviors kb~ 4:00. This value ofN is consid-
ered to be in a region of transition between the low and high number of possible states, because
values greater tha#100 allow the disclination lines to get trapped in several different local min-
ima. Fig.5.13shows the results of simulations considering the one-constant case in a droplet
with moderate homeotropic anchoridg= 1:00, where , = 0:471 Unlike the previous re-
sults, the bulk allocates an entanglement of linked disclination loops randomly organized. Even
performing the procedure of thermal quench for several times by heating the droplet, the LC
sample gets stuck in metastable states. Also, the dropletlwith0:25, weak anchoring at the
surface presents similar results. The stability of defects in a LC has high dependence on the
surface geometry. In the case discussed here, a slice in the droplet reveals that the defects are
nematic disclinations with winding numbefls 2, since the director eld rotates aangle in the
counterclockwise sense when the defect is surroundedzoycockwise turn (or vice-versa),
as shown in the snapshot of Fig13(a). WhenN  4:00, the disclination loops can assume
different stabilized arrangement, such as single or multiple unlinked loops, the Solomon or a
three-component link, both with an extra loop, the Whitehead link, and the Hopf link, for exam-
ple. If N = 4:00 multiple unlinked loops and Hopf links are found after thermal que26i][
Isosurfaces of order parametgr= 0:74 are shown in Fig5.13(b)-(c). By carefully analyz-
ing the disclination network, it is possible to observe the formation of Hopf links (two linked

Fig. 5.13: Chiral isotropic sample wititN = 4:00in a droplet with moderate perpendicular anchoridg< 1:00)

atTr = 0:100(200kMCs). (a) The bulk keeps trapped in metastable states, forming nematic disclination lines
with winding number 1+2. The Miller textures with circular (C) and linear (L) polarized light show the resulting
chaotic con guration. (b)-(c) The linked and knotted structure forms the Hopf-link with an extra loop, as can be
seen by the red order parameter isosurfaceso00:74.
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circles) with an extra loop.

We carried out simulations of nematic CCN-37.(, 3, = 0:416) with strong (s =
1:00) and weak Js = 0:25) homeotropic anchoring. Interestingly, instead of random orga-
nizations of disclinations, in both cases the results have the same behavior where the defect
lines arrange in a single loop forming the twisted loop defect (red isosurfac®s=00:74),
just differing from each other only in the loxodrome radius. Fdl4 shows the results for
CCN-37 in the droplet with strong homeotropic anchoring. Unlike the casH fer3:00, just
one thermal quench is not enough. Even repeating the procedure three times, the structure in
the strong anchoring still remains constrained in metastable states. By setflhgup900,
we observe that the thermal quench is ef cient at reaching the single loop defect surrounding
the surface. Starting the relaxation in a higher temperature makes it possible for the spins to
access locally unfavorable energetic states, but that are macroscopically advantageous to form
up structures with a well de ned pattern. This extra thermal agitation allows the system to ac-
cess similar energy level states, but separated by an energetic barrier. On the contrary, just one
thermal quench is enough when considering weak anchoringliard0:700, since the bulk
can relieve the defect line to the surface easier than the moderate anchoring. The cholesteric
layers twist around the bipolar axis forming 2 isocline lines beyond the poledinection, as
shown in Fig.5.14(a). It is also possible to observe the Miller textures similar to experimen-
tal results 1. Fig. 5.14(b) shows the resulting con gurations when rotating the droplet by

Fig. 5.14: CCN-37 sample wititN = 4:00 in moderate homeotropic anchorind; (= 1:00) at Tr = 0:100 (200
kMCs). (a) The snapshot reveals the ground state in the bulk, with regular space cholesteric layerdiedatign.

It is also possible to observe the twisted loop defect by red isosurfaces of the order pa@mdigi4, and the
Muller textures for circular (C) and linear (L) polarized light showing a resulting image similar to experiments. (b)
Cross-section snapshot showing tteplane. (c) Then2 = 0:90 (green), (d)ng = 0:90 (blue) and (enz = 0:90
(yellow) isosurfaces, show the component behavior along the bulk.



5.4 Results and discussions 104

90 around thez axis. The isosurfaces of (green),n§ (blue) andn? (yellow) set equal 0.90,
shown in Fig5.14(c)-(e), con rm that the structure alternates the componaimsndnf, along

z direction, anch? takes place just near the poles. As the number of isocline lines between the
two opposite poles iM = 2, respectingl = N 2, according to Eq.5.13 the rst approach
scaled length of twisted loop defect wiRyx = 38is given byC = 13:28R .

The quenching process of planar surface anchoring promotes an intriguing morpholog-
ical behavior depending on the elastic constantd\fer 4:00. Firstly, we mention the elastic
one-constant approach case_( = 0:471) with Js = 1:00 and Js = 2:00 to check if they have
similar or different behavior. As shown in Fi§.15 nematic defect lines with windingle2
appear in the bulk, but do not close the loop. Since Bgth 1:00andJs = 2:00 cases show the
same results, we illustrate just tlg= 1:00in Fig. 5.15 Several thermal quenches, consider-
ing dT = 0:100, show that the one-constant approach is not ef cient on completely annihilating
disclinations (red isosurfaces 8f= 0:74) along the droplet volume. The disclination line be-
havior is chaotic like the isotropic elastic sample in droplets with homeotropic surface. The
intricate topology and the pitch near the chaotic regime make the system complex and hard to
reach any known pattern. We set a different procedure for quenching the droplet, selecting the
number of MC cycles irb00 k and a smaller temperature stepdm = 0:025. Interestingly,
when the elasticity is slightly changed fii1¢ Koo = 1:10andKzze Koo = 1:20( = 0:456),
the stable structure is completely modi ed, as shown in Bid.§ while in the isotropic case
the disordered disclinations still remain. For low chiralify¥ R), the CLC droplets present
the TBS pattern while for high chiralityp(> R) the RSS is predominant. The nal structure

Fig. 5.15: Chiral isotropic sample wittN = 4:00 also forming an incomplete-bTBS in moderate anchoring energy

Js = 1:00 (atTr = 0:100—200kMCs). (a) The cross-section snapshot shows that the cholesteric layers are bent,
but it is incomplete to form the spiral pattern due to the disclination lines passing through the central plane (red
isosurfaces o6 = 0:74). Boojums do not appear in this case, instead, two disclination lines are formed and they
are not annihilated, even performing several thermal quenches. (b) Snapshot showing the director eld at marked
continuous and (c) dashed line cross-section in (a). Also, the onion-like pattern is incomplete. The (C) and (L)
Muller textures are the results for circular and linear polarized light passing through the sample, respectively.
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Fig. 5.16: Slightly anisotropic sample witk11¢ Koo = 1:10andK3ze Koz = 1:20with N = 4:00forming the bTBS

as equilibrium state. (a) The cross-section snapshot shows the onion-like pattern formation, where the cholesteric
layers bend in the bulk. In this stable state, the two boojums (red isosurfaBes 0f74) are in the same droplet
hemisphere. Again, the Miller textures of circular (C) and linear (L) con rm similarity with experimental results.

(b) Snapshot showing the director eld at marked continuous and (c) dashed line cross-section in (a).

after one thermal quench is the bTBS, the intermediate state between TBS and RSS, where the
boojums (red isosurfaces &= 0:74) are not opposite anymore. Figs16(a)-(c) are snap-

shots showing different slices of the director eld in the droplet, with the respective Muller
textures with circularly (C) and linearly (L) polarized light. The boojums are located in the
same hemisphere and make an anglé384 with the droplet center, which only differs in ap-
proximately5 from the angle found in simulations by the LdG methad][ In the bTBS, the
cholesteric layers bend in the bulk following the surface curvature and breaking the cylindrical
symmetry, creating the so-called onion-like pattern (Bid6-(a)) or the double spiral arrange-

ment (Fig.5.16(b)), depending on the observation point. We highlight the situation found in
Fig. 5.16(c), where the directors perpendicularly oriented to the plane of observation form an
arc shape arrangement near the droplet center. The rstemerged impression is that such arc does
not connect to the boojums, like it happens when observingyt@ane in Fig.5.16(a). For a

better understanding, we plotted isosurfaces of square compmie(lglseen),ni (blue) andn?

(yellow), as shown in Figs.17. The incomplete arc iyz plane happens because the boojums

are far apart in a considerable distance compared to the droplet radius. When observing regions
of n2 = 0:90, it is possible to see that the arc shape connects the boojums in a sh hoop-like
arc shape, beyond a ring surrounding the surface boundaries passing between the boojums, as
shown in Figs5.17-(a) and (b). Looking at the isosurface mf = 0:90 in Fig. 5.17-(c) and

(d), we observe that the formed structure also emerges from both boojums and coincides with
perpendicular directors in the cross-sectionxgfplane in Fig.5.16(a). The last isosurface
representingyy = 0:90 also demonstrates the spiral pattern taking form from the boojums, but
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Fig. 5.17: Squared components isosurfaces in the bTBS showing the director eld along the buli Tdreen),

n§ (blue)n2 and (yellow) isosurfaces are set in 0.90. (a)-(b) Mheomponent shows the sh hoop-like isosurface
connecting the two boojums, together with a ring isosurface surrounding the surface and passing between them.
(c)-(d) ThenZ component reveals two isosurfaces originating in one boojum and nishing in the other. (e)-(f) The

n§ component shows two distinct symmetric isosurfaces starting in the boojums and nishing near the surface.

Such isosurface shows (g) twd? lines starting near the boojums, as shown in the plane snapshot close to the
boojums. (h)-(j) The isosurfaces are inset together in pairs to observe their complements the director distribution
along the bulk.

in this case, the§ component creates two similar structures in which none of them connects the
surface defects, as shown in Figl7-(e) and (f). In addition, after slicing the droplet close to
the poles, we observe two cholesterid disclination lines arising from the boojums, as shown
in Fig. 5.17-(g). For larger values of, the expected RSS presents twd lines winding to-
wards the droplet cente2(4]. It did not happen here because the chirality levelNor 4:00
Is not enough to form the helicoidal shape of disclinations, and it is still the bTBS. Considering
the CCN-37 elastic constants {,, 5, = 0:416), the twos = +1 boojums also appear in just
one hemisphere, but the double spiral pattern seems to organize in square layers as if the bulk
did not feel the droplet curved surface.

As noted in the diversity of structures found while changing the chirality by controlling
N, we tested another LC, supposing the ZLI4330 elastic constant, givmbl{,, = 2:00and
Kaze Kz = 2.92[7] ( 4, = 0:36]) in the strong planar anchorings(= 2:00) droplet. Such
LC has the higheKzs3 elastic constant compared to all the other samples previously studied.
We would expect that the supramolecular architecture would not arrange in a structure with
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cholesteric layers bending in the bulk. Indeed, FHd.8 shows the PBS as stable state after
performing one thermal quench froin = 0:700to Ts = 0:100in steps ofdT = 0:100, run-

ning 200kMCs for each temperature. Unlike the double spiral pattern, the PBS presents two
diametrically opposed boojums with topological chasge + 1, demonstrated by the two blue
arrows in Fig.5.18(a). Once the bipolar axis connecting the boojums does not coincide with
a Cartesian axis, a perpendicular slice (gray line) related to the bipolar axis can be useful for
understanding the director orientation. Figl8(b) shows the directors forming two choles-
teric *1°2 disclination lines in the bulk. Differently from TBS, where the cholesteric layers
bend towards the boojums near the poles, in PBS they remain perpendicular to the bipolar axis
including near the poles. This is con rmed by the isosurfacesfofgreen),n? (blue) andn?
(yellow), equal 0.90 shown in Fig5.18(c) and (d). These isosurfaces of TBS presented a pair
of perpendicular rings passing through the boojums, and one component coinciding with the
bipolar axis. Contrary to TBS, the isosurfaces in PBS exhibited just one oscillated ring in the
component; following the boundaries, while an elliptical ring-like is formed by two different
componentsr{x andny). Also, there is not a single isosurface directly connecting the boojums

Fig. 5.18: Simulations for ZL14330 nematic LC sample wilth = 4:00at Tr = 0:100 (200 kMCs). (a) This LC
presented the PBS as equilibrium state, where the two boojums (red isosurf&e90f4) are kept antipodally
aligned (located by the blue arrows) forming the droplet bipolar axis. It is different from the bTBS case, where the
boojums are in the same hemisphere. The circular (C) and linear (L) light polarization in the Muller textures show
bright and dark circles and elliptical rings. (b) The marked line in (a) presents the cross-section perpendicular to
the droplet bipolar axis, showing the twd**? lines appearing in the bulk. (c)-(d) The green, blue and yellow
isosurfaces, related 1@, nf, andn2 components, respectively, show the director eld along the bulk; in this case,

all the three components have isosurfaces connecting the boojums.
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through the bipolar axis, so the! line may not appear. The behavior is similar as if tHé

has split in two *1°2 lines, since the cholesteric layers are perpendicular to the bipolar axis
instead of bending along the bulk. We also observe the optical retardation phenomenon in the
Mdller textures forming regular circle patterns in the center of the droplet, surrounded by bright
and dark elliptical rings.

Discussions

The director con gurations in cholesteric droplets is size-driven, so the changing of
Re p ratio provides transition between stable structures. We reported the formation of different
structures after thermal quench in cholesteric droplets, where the pitch ranged fron®
to N = 4:00, considering the elastic isotropy and anisotropy, in droplets with parallel and
perpendicular surface alignment (also testing the weak and moderate anchoring energy). In the
N = O regime, the found stable states are the well-known hedgehog pattern in the homeotropic
anchoring. FoN = 1:00 at this same boundaries, the strong anchoring case also forms the
hedgehog pattern, but a surface ring defect is reported in the weak anchoring case. Keeping
the chirality increasing, th&l = 2:00 case shows a director eld forming the equatorial loop
disclination. The structural pattern fof = 3:00 presented a twisted or a non-uniform loop
defect, depending on the combinations between the elastic constants and surface anchoring
energy. In theN = 4:00regime, besides the twisted loop defect pattern, metastable states could
be also found. Considering the parallel anchoriNg= 0, 1:00 and2:00 presented structures
with two opposite boojums at the surface, forming the BS for the nematic case, and TBS for
bothN = 1:00and2:00. TheN = 3:00 case presented the TBS, but an incomplete-bTBS also
appeared, depending on the set of parameters choseNl £ar.00, we reported the formation
of incomplete-bTBS, the bTBS, and the PBS. We summarize the discussed structures of this
chapter in Tab5.1, associating the pitch parametgr the elastic constant set, and the kind of
anchoring.

Tab. 5.1: Table containing different stable and metastable states for several combinations of chirality, elastic
constants, surface alignment and anchoring energy.

] Droplets pattern con guration as a function Nf \

Chirality level LC weak H anc. \ moderate H anc. \ moderate P anc.
N =0 ISO hedgehog pattern hedgehog pattern BS
CCN-37 hedgehog pattern hedgehog pattern BS
N = 1:00 ISO surface ring defect  dislocated hedgehog pattern TBS
' CCN-37 surface ring defect hedgehog pattern TBS
N = 2:00 ISO equatorial ring defect equatorial ring defect TBS
' CCN-37 equatorial ring defect equatorial ring defect TBS
N = 3:00 ISO twisted loop defect metastable state TBS/incomplete-bTBS
' CCN-37 non-uniform loop defect twisted loop defect TBS
ISO metastable state metastable state incomplete-bTBS
N = 4:00 Slight Aniso twisted loop defect metastable state bTBS
' CCN-37 twisted loop defect twisted loop defect squared bTBS
7114330 twisted loop defect metastable state PBS
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According to the results, the elastic one-constant approach has demonstrated to be in-
suf cient in reproducing stable states after thermal quench in chiral droplets of moderate surface
anchoring withN = 3:00 and4:00. It may happen because the helix rotates in several differ-
ent directions inside the bulk, and the surface energetic contribution becomes insigni cant to
impose any kind of change. As the LC has elastic isotropy in the one-constant approach, the
directors can not get rid of defects made in points of space where the cholesteric helices are
rotating in different directions. Splay, twist and bend deformations may equally contribute for
the director distribution along the bulk. Thus, the high degree of spherical geometry complexity
prevails in cases of elastic isotropy with high chirality. For both homeotropic and planar degen-
erate anchoring the chiral LL potential could just reproduce structures in low chirality regime.
WhenN assumes a value ne&00, the thermal quench easily makes the director organization
chaotic, due to the raising in the number of metastable states, and the cholesteric disclination
lines remain resistant to the relaxation process. When the surface is homeotropically aligned,
linked and knotted metastable structures look similar to the results found in simulations with
the LdG methodZ02. Even after performing several thermal quenches, they could not be dis-
rupted. In the planar boundaries, the system presents a certain dif culty to gap to states like
the bTBS predicted with the LdG model], 204]. Droplets for both homeotropic and planar
anchoring easily relieved the chaotic initial con guration wher R, since the pitch becomes
practically equal or bigger than the droplet diameter. It is important to mention that the stable
states diversity, in a certain chirality level, was possible to be achieved just when considering
elastic anisotropy, mainly fax = 4:00.

Simulations carried out by $et al.[204] concludes that thermal agitation may not in-
duce transitions between structures. Also, by calculating the total free energy for chiral droplets
with N = 4:00, their results reveal that RSS seems to be a most favorable stable state than
PBS. Besides, given a xed value ®f, all structures in planar surface alignment, are found
to be stable states by initial con gurations generated by Ansatz, even when having different
internal energies. In contrast, our thermal quench simulations, made by the MC method, has
the sample starting from initially random director eld and a well-ordered equilibrium states
can be reached. Such ordered con gurations attain the most stable equilibrium state for each
set of elastic constants. The nal results in the MC method may not depend on the initial
con guration, even when starting the quenching process by other random states. Considering
this situation, other well-ordered structures will hardly ever be found in systems driven by the
stochastic Metropolis algorithm. Such interchange between well-ordered states would happen
only if they were practically in the same energy levels, so that thermal agitation could induce
that modi cation. While the LdAG model is able to nd RSS and PBS by considering initial or-
dered Ansatz, we succeeded on describing the bTBS as the nal state for droplets of the slightly
elastic anisotropic LCK11° K22 = 1:10andKzsze Ko, = 1:20) with planar degenerate anchoring,
and the PBS pattern for droplets of ZLI14330;¢* K22 = 2:00 andKzze Koo = 2:92).

Notwithstanding the lattice is discretized in simulations, all energetic parameters in
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Eg. .69 have continuous function properties, once they are elastic constant and chirality
dependent. Such parameters directly in uence the system energy minimum behavior. The
chiral additive pairwise potential showed that the stability of states for a LC changes as the
chiral parameter shifts its value. Furthermore, given a xéd, it is also possible to observe
macrostructural switches by changing elastic constants and anchoring energy. A multidimen-
sional diagram would be necessary to better understand two aspects. Firstly, the new energy
minima arise from variating but keeping all the other parameters xed. Secondly, the en-
ergy minima may bifurcate while xingN and changing elastic constants. We highlight that
maintainingRep xed for different values ofR does not mean keeping xed, since it is
pitch dependent. We mentioned thpat= 40:00 must be a considerable value for the validation
of Luckhurst chiral potential. If considering a small droplet wikh = 20, p is bigger than
R, but the chiral parameter keeps its value, and its magnitude is enough for annihilating and
expelling defects from the volume to the surface. Althoughas low values compared to the
nematic interaction energy, it can be enough for presenting chaotic regimes in droplets re-
spectingp R . Precise and re ned simulations are required to better investigate the energy
dependence, their sensitive changes with chirality, elasticity and anchoring conditions, and how
the macrostructures are in uenced by surface energy in regioNsr&ar structural transitions.

The considered droplet radili®s = 40 required some extra thermal quenchesNor
4:00. By keeping the pitch xed, simulations of bigger lattices generatihg> 4:00 may
require even more thermal quenches due to the high increment in the number of metastable
states. As the sample reaches states with truncated loop defects for a given temperature, the
trapped state stabilization is totally dependent on the thermal agitation in the system. Let us
consider a multidimensional graphic of energy levels in the phase space of accessible states as
a function of . If is xed in zero, a homeotropic droplet may organize in a hedgehog
structure as the accessible state of global energy minima, for example. The bigger the chiral
parameter becomes, the bigger is the number of new energy minima which may emerge in
energy landscape. The thermal energy is a function of the system temperate, itEpeans
Er1TRC. Let us suppose that all the spin changes have occurred with maximum angle of rotation
(according to the BW method) during the cycles. &§,must assume a maximum value of
thermal energ)E;ma’@ for such a temperature that the system has to make changes of states. If
Tr decreases, the maximum angle of rotatiggx for the spins also decreases in similar way by
a complicated arcsine function o, where the limits aremax = OwhenTgr! Oand max =
whenTr ! T,n. Between the range dik = 0:400andTgr = 0:700 we can consider, as a rst
approach, thatmax linearly decays witig, but it is not true supposing thEt;ma"0 respects the
same behavior as a function ofax. If N is near4:00, several energy minima may rise. Let
us suppose that the system is in a temperafgr@ccessing thieth state with local minimum
energyU;, and it needs to overcome an energetic bafdgrto access the global stateof
minimum energy. The energetic barriers may drastically and complexly increbsmaeases,
so decreasing the temperature in stepdDf= 0:100 makes the thermal energy decreases in
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such a way that the system can not get rid of states featured by local energy minima, in other
words, U; + E;ma’e < Up. Thus, in case the droplet is trapped in an unexpected metastable
state, it could access other lower energy states only by suffering an external disturbance, either
thermally by a new thermal quench, by light illumination if the chiral dopant is photoresponsive,
or by electric eld application which favors some kinds of alignment. As the annihilation of
defects is related to the system's accessibility to lower energy states, it can easily atTur if
assumes smaller values, since the free energy is related to the disclination length. Besides that,
this annihilation behavior due to thermal agitation should be simpler for smaller values of
sinceUy, also reduces with decrements of chiral term.

The values of order parameter isosurfaces in the MC simulations were taag m
0:74, while the values obtained by the LdG model form all the point and line defects with
Sdc = 0:48[204. The common values of order parameter for LC in nematic phase changes
in the region between 0.40 and 0. B, in which 0.40 is near the critical value of isotropic-
nematic phase transition, and 0.70 is near the limits of nematic to smectic phase. The order pa-
rameter near the nematic-smectic phase transition was theoretically obtained in good agreement
with experiments by the McMillan-de Gennes appro&3¥-236. According to the McMillan
criteria, the nematic-smectic temperaturgd) to isotropic-nematic temperaturgy) ratio has
a value generally greater than 0.87. By considering the Maier-Saupe theory, this ratio deter-
mines an upper value &pp = 0:70 where the order parameter for nematic phase is still valid,
once this theory can not be hold for temperatures much lower than isotropic-nematic phase tran-
sition temperature6]. The pairwise potential used in our MC simulations does not describe
smectic behavior, as the procedure on obtaining the molecular model, which is elastic constants
dependent, consists of small director eld distortions considering the Frank free energy for ne-
matics [3,4]. Figs.5.19(a) and (b) show, for example, high ordered regions in the bulk with
weak and strong homeotropic anchoring for CCN-37 LC, respectively. Even near the surface,
the order parameter attains values n§at = 1:00, indicating an almost perfect order. Actu-
ally, the nematic phase does not have perfect alignment, so this value for the order parameter is
a good representation for the well ordered regions in this phase, since the simulations are per-
formed with lattice model of spins allowed to change their orientation but xed in the space. As
the high order representation happens 1&ar0:70in real cases, which i80%of values found
in high ordered regions in the MC simulations, the isosurfaces carried outSygh= 0:74
would have an equivalent order parameter giverBy;y = 0:52. This value is near the one
found by the LdG modelY 4 = 0:48), but the lowest valu&,,, would have problems after
considering/0%of Snear the isotropic-nematic phase transiti§p (= 0:42). It would lead to
a value neaf§y,, = 0:30. Since defect regions, where the order parameter is low, are complex
to be described for theoretical models, one can$e= 0:40 as a rst approach, where the
Isotropic-nematic transition occurs. So, associafigg = 0:40in real cases fofyc = 0:40in
the MC simulations, an&,pp = 0:70in real situations foSyc = 1:00in MC simulations, by a
simple proportion, it is possible to assume tGa¢ = 0:74in MC simulations may correspond
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Fig. 5.19: Order parameter near the surface in the CCN-37 homeotropic droplet. (a) The weak anchoring energy
(Js = 0:25) shows that the bulk expels the defects to the surface, forming the twisted loop defect, similar to
the loxodrome curve. It is possible to observe that the defect line in uences the order in the surface, where red
regions have high alignment and blue color are low order regions of order par&@nktawever, (b) the moderate
anchoring energyJ = 1:00) also presents the twisted loop defect near the surface, but it is inside the droplet,
which means that the surface still keeps the homeotropic order at the surface. So, the penetration depth of twisted
loop defect in the surface is related to the anchoring energy.

to Squiv = 0:57in real cases. Indeed, this last value still seems to disagreeSnigh= 0:48,
but the estimative made here is simple and it is complicated to nd a correct vallygofy .
According to McMillan-de Gennes approach, bigger values for this ratio makes the upper value
Sipp SMaller than 0.70, which decreases the representation range of order parameter in real ne-
matics. Moreover, the lower valu#,, is closer 0f0:43, instead 00:40taken in the approach.
Supposing these corrections, and tBag = 0:72 in MC simulations also presents the same
iIsosurfaces in the most part of the cases studied, the value to represent real nematics approaches
would beSquiv = 0:53, which now seems to be in better agreement \@itl, minimizing the
error.

Linked and knotted elds play important signi cance in classic and quantum eld
theories 37,238, dynamics of vortices in uid mechanic2B9, proteins R40 and liquid
crystals P02 211,241,247. Theoretical analysis of nontrivial tangled loop con gurations are
complex and dif cult to predict because continuum space allows in nite possibilities of arrange-
ments. The elastic one-constant approach of CLC droplets in homeotropic surface anchoring
presented chaotic con gurations of loop defects forming Hopf links with an extra loop. It can
be related to the thermal quench speed associated with magnitdde \0fe do not rule out the
possibility of nding other links and knotted con gurations in the vast range of the full set of
possibilities in spherical geometry. Interestingly, the elastic anisotropy plays an important role
in homeotropic droplets acting over disclination lines like Meissner effect in supercondtittors.
The similarity to this effect is given when magnetic eld lines expelled outside the material is
associated with the single twisted loop defect formed and forced towards the droplet surface,
since in both cases the phenomenon is temperature dependent. Notably, chirality ensures that

13The Meissner effect is associated with expulsion of magnetic eld from internal part of superconductive ma-
terials when below the superconductivity critical temperature.
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the nematic disclination lines keep a certain minimum length in stabilized con gurations. It
is observed in homeotropic droplets, cause planar anchoring just showed point defects at the
surface, as predicted by the Poincaré-Hopf theorem. The dependence dwlgfdoaxodrome
parametrization in Eq5(13 ts the estimative well for scaled length in homeotropic droplets
with N = 3:00andN = 4:00. In case ofN = 2:00, the number of isocline lines is zero and
the loxodrome curve is similar to an in nite symbol, but droplets did not show this kind of
disclination loop. On the other hand, it presented a simple single equatorial ring defect, where
its estimative size is performed by the circle length equation. The estimates for twisted loop
defect length holds valid fad  3:00in homeotropic anchoring cases.

Nontrivial topology of CLC droplets is a burgeoning eld in soft matter science due to
the complex and intriguing chiral sensitive energy landscape. While the well-ordered con g-
urations in CLC droplets can be used as lters, biosensors, optical cross-communicators, and
Bragg resonators, droplets with metastable states are unique and can be used as storing infor-
mation. Structural modi cations provide changes in the media optical properties in such a way
that droplets in different stable states can serve as photonic elements in optical systems. Bound-
ary and initial conditions besides procedures of system relaxation are fundamental factors that
lead to speci c states and director elds. Researches exploring these aspects in cholesteric
droplets under Metropolis algorithm point of view can bring new relevant information on how
simple changes in the chiral anisotropic pairwise additive potential affect regions of structural
transitions.



Chapter 6
Conclusions

CLCs con ned in different systems were studied by means of MC method and Metropo-
lis algorithm. The relaxation process considered that spins in the lattice interact via chiral pair-
wise additive potential. We succeed on studying three different, important physical phenomena
in CLCs: the role of surface anchoring in hybrid aligned cells, the striped pattern formation af-
ter wetting transition, and the formation of stable and metastable states after thermal quenches
in spherical droplets.

Firstly, we analyzed a hybrid cell lled with a CLC and investigated the role of the an-
choring energy on the director organization by using MC simulations. We veri ed three kinds of
behavior by varying this quantity: a planar arrangement, a striped pattern and a conic-like struc-
ture. We emphasized that the pairwise additive potential proposed for CLCs is able to aggregate
anisotropic effects on the interactions, so that the striped pattern can structurally reproduce
CLCs in a similar fashion to what is found in experimental samples. In our MC simulations,
the surface plays a very important role on determining the orientation of the directors through
the volume according to the anchoring energy, therefore, being one of the key parameters on
the striped pattern formation. We identi ed a structural transition-like behavior by changing
the anchoring energy parameter and veri ed that it is different for each of the liquid crystals
host studied. We hope that the results found here may lay the bedsheets for deeper studies, both
experimentally and theoretically, on the stripe pattern formation of CLCs.

Secondly, we have used the MC method and the MH algorithm to model pattern for-
mation during a wetting transition in CLCs. We used a pairwise potential proposed by Luck-
hurst B] and a good qualitative agreement with experiments was found. Experimental samples
have shown that while the stripe pattern is under formation, it is possible to control them with
temperatureq], including the orientation of the stripes and the way they develop. Both ex-
periments and simulations show that the way the stripe modulation forms depend on the pitch
to thickness ratio. In other words, different pitch length in the temperature controlled sample
(thickness) might produce different manner of development, in a similar way of planar oriented
CLC samples under an applied eld. We have veri ed that the elastic anisotropy is an impor-
tant parameter for the appearance of the pattern. The simulated textures predict both, GM and
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DM modulations. We interpreted the formation of either GM or DM stripes in terms of the
initial moments of the growing layer. Accordingly, if the layer is too small to accommodate
the formation of the SH con guration, the sample is essentially nematic and the only way of
developing stripes is by a nucleation process, where new stripes are formed one by one by trans-
posing an energy barrier. On the other hand, if there is enough space for the CLC layer to form
the SH con guration, the stripe formation occurs once elastic distortions become too high, so
the LH con guration becomes more viable, a homogeneous process describ@d kufther
analysis are being undertaken to improve the model, especially on the elastic anisotropy matter.
The results presented here might be used for better understanding the grating formation (with
applications in optics and photonics) in CLC, and to model bio-systems with homogeneous to
periodic deformation transition48Q.

Finally, we have studied MC simulations of thermal quenches in spherical CLC droplets,
by interacting the spins via Luckhurst chiral pairwise potential. Since the potential is anisotropic,
and links the energetic parameters to LC elastic constants, we analyzed the quenching process
simulations for several combinations of elastic constants, droplet size to pitch ratio regimes,
strong and weak anchoring energy in both homeotropic and planar boundary conditions. We
clearly observe the elastic anisotropy directly modifying the defect morphology and the facil-
ities on annihilating them. Results show that for low chirality in the system both the LL and
the Luckhurst chiral potential were successful in describing the formation of stable states that
appear in experiments. Fof = 3:00, the metastable states start to manifest if the elastic con-
stants are considered to be equal. On the contrary, elastic anisotropy included in the potential
could well reproduce stable states known in the literature. MainlyNfer 4:00, the relaxation
process in homeotropic droplets gets the director con guration to stick in metastable states
when considering the chiral LL potential. Again, setting different ratios for elastic constants in
the Luckhurst chiral potential is the key for reaching the stable states diversity. We highlight
the possibility on nding different stable states con guration by exploring other sets of elastic
constants ratios, anchoring energy, chirality level and temperature steps.

Trying to reproduce the spherical geometry in a small rectangular lattice can poten-
tialize the irregularities of a squared border, since there are not points enough at the surface to
mimic a sphere. In fact, the droplets radius in our MC simulations is near half-size or smaller
when compared to conventional simulations made by explicit nite difference method. Some
structures that we found are exactly aligned with some axes. The rst impression is that small
lattices may induce a bias in the Cartesian axes direction, but it is discard this possibility be-
cause more than one stable structure was found to be with symmetry axis pointed to a random
direction in the space, for example the B$ € 0), the twisted loop defectN = 3:00), or even
the PBS N = 4:00).

Systems where the spins do not interact with all the six rst neighbors in the boundaries
have complex connections with real elastic constants. We consider that a system is closed if all
spins in the bulk always interact with their six rst neighbors. Better results of elastic constants,
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in agreement with real values, were obtained when the system is closed, since the pairwise
interaction can better reproduce the director eld variations in continuous media, if considering

a well balance between small deformations and thermal agitation. In the hybrid-aligned cell
system, all spins in the bulk have six neighbors, including the borders ix&imely direction,

since the periodic boundary condition was taken in account. On the contrary, to reproduce the
striped modulation after wetting transition, no periodic boundary conditions were implemented.
In the third studied system, the spherical geometry system is considered to be closed system. In
the hybrid-cells and the droplet systems, closed systems, real elastic constants ratio were used
in the simulations, and could successfully reproduce experimental behaviors. Even the second
system not being closed, the chiral pairwise potential reproduced the striped pattern in good
qualitative agreement as experimental results.

To the best of our knowledge, we rstly reported the use of the anisotropic chiral pair-
wise additive potential, de ned in Eq2(69), to describe stable and (in some cases) metastable
con gurations in environments like cells with different kinds of anchoring, and droplets. The
main advantage to perform Monte Carlo simulations over other techniques is the inclusion of
temperature as a real parameters that controls the thermal uctuations in the system. Even
keepingTr xed, or changing it, cholesteric structures can be successfully reached according
to the interplay between the chirality and other parameters involved in the geometric con ne-
ment. Besides, as the additive potential does not explicitly depend on the space derivatives
magnitude (the interaction energy just depends on the spins orientation and their relative posi-
tion to each other), smaller systems can be designed when compared to the system size treated
by other simulation models. Consequently, it makes possible the analysis of mesoscopic and
macroscopic systems with low computational power consumption. In the future, such Monte
Carlo technique opens opportunities to study several problems of industrial interests by using
the relatively simple pairwise interaction.
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